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We present an experimental test of the Clauser-Horne-Shimony-Holt Bell inequality on photon pairs in a
maximally entangled state of polarization in which a value S ¼ 2.82759� 0.00051 is observed. This value

comes close to the Tsirelson bound of jSj ≤ 2
ffiffiffi

2
p

, with S − 2
ffiffiffi

2
p ¼ 0.00084� 0.00051. It also violates

the bound jSj ≤ 2.82537 introduced by Grinbaum by 4.3 standard deviations. This violation allows us to
exclude that quantum mechanics is only an effective description of a more fundamental theory.
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Introduction.—Bell [1] showed that the results of mea-
surements on quantum systems cannot be explained by
local theories, since they violate certain inequalities among
the correlations between the outcomes of measurements on
two distant locations A and B. The simplest of these Bell
inequalities is the one by Clauser, Horne, Shimony, and
Holt (CHSH) [2], which can be written as jSj ≤ 2, where
the parameter S is a combination of correlations Eðai; bjÞ
defined as

S ¼ Eða0; b0Þ − Eða0; b1Þ þ Eða1; b0Þ þ Eða1; b1Þ; ð1Þ

where a0;1 and b0;1 are measurement settings in A and B,
respectively, and each measurement has two possible
outcomes, þ1 or −1. The correlations Eðai; bjÞ are defined
from the joint probabilities P for outcomes þþ, þ−, −þ,
and −− as

Eðai; bjÞ ¼ PðþþÞ − Pðþ−Þ − Pð−þÞ þ Pð−−Þ: ð2Þ

Tsirelson [3] showed that, according to quantum theory,
jSj has an upper bound of 2

ffiffiffi

2
p

≈ 2.82843. Popescu and
Rohrlich [4] demonstrated that values up to S ¼ 4 were
compatible with the no-signaling principle that prevents
superluminal communication. This difference stimulated
the search for principles singling out Tsirelson’s bound as
part of the effort for understanding quantum theory from
fundamental principles. So far, the following principles
have been identified that enforce Tsirelson’s bound: infor-
mation causality [5], macroscopic locality [6], and exclu-
sivity [7]. Other principles, such as nonsignaling [4] and
nontriviality of communication complexity [8,9], allow for
higher values.
On the other hand, quantum theory introduces a cut

between the observer and the observed system [10] but
does not provide a definition of what is an observer [11]. To
address this problem, Grinbaum [12] has recently tried to
integrate the observer into the theory. For this purpose, he

introduces a mathematical framework based on algebraic
coding theory [13] that provides a general model for
communication and enables an information-theoretic def-
inition of an observer. This definition involves a limit on the
complexity of the strings the observer can store and handle.
These strings contain all descriptions of states allowed by
quantum theory but may also contain information not
interpretable in terms of preparations and measurements.
The language dynamics of these strings leads to a con-
tinuous model in the critical regime that, when restricted to
measurements on bipartite systems in a three-dimensional
Euclidean space, predicts that the violation of the CHSH
Bell inequality is upper bounded by 2.825 37(2). This
prediction holds under the assumption that the number of
strings with the same complexity after uncomputable
Kolmogorov reordering is six and some assumptions on
the mappings between certain metric spaces (see Ref. [12],
Sec. V). It further uses the most precise determination
available of a critical exponent in three-dimensional Ising
conformal field theory [14].
The value predicted by Grinbaum is slightly smaller than

the Tsirelson bound and is so far consistent with all the
available experimental results [15–28]. Not being able to
exceed Grinbaum’s limit would support that quantum
theory is only an effective description of a more funda-
mental theory [12] and would have a deep impact in
physics and quantum information processing. This has
important consequences for cryptographic security [29],
randomness certification [30], characterization of physical
properties in device-independent scenarios [31,32], and
certification of quantum computation [33].
An interesting aspect of Grinbaum’s work is the pre-

diction that Tsirelson’s bound is experimentally unreach-
able, while quantum physics does not impose such a limit.
The model can, thus, be compared with direct observations
in nature.
From a more general perspective, an experimental search

for the maximal violation of a Bell inequality [1] tests the
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principles that predict Tsirelson’s bound [5–7] as possible
explanations of all natural limits of correlations.
Prior work.—The violation of Bell’s inequality has been

observed in many experiments with exceedingly high
statistical significance. Many of these experiments are
based on the generation of correlated photon pairs using
cascade decays in atoms [15,16] or exploiting nonlinear
optical processes [17–21]. Other successful demonstrations
were based on internal degrees of freedom of ions [23–25]
and neutral atoms [26], Josephson junctions [27], and
nitrogen-vacancy centers in diamond [28]. Figure 1 sum-
marizes the result obtained for the Bell parameter and the
corresponding uncertainty of several experimental tests.
While continuous experimental progress has made it

possible to approach Tsirelson’s bound with decreasing
uncertainty, predictions such as Grinbaum’s, which would
imply a radical departure from standard quantum theory,
are compatible with all existing results.
Here, we report on an experiment with entangled-photon

pairs that pushes the uncertainty in the Bell parameter by
anotherorder ofmagnitude compared toprevious experiments.
Our experiment follows the concept in Ref. [17] and is

shown in Fig. 2. The output of a grating-stabilized laser
diode (LD, central wavelength 405 nm) passes through a
single mode optical fiber (SMF) for spatial mode filtering,
and is focused to a beam waist of 80 μm into a 2 mm thick
Beta Barium borate (BBO) crystal.
In the crystal, cut for type-II phase-matching, sponta-

neous parametric down-conversion in a slightly noncol-
linear configuration generates photon pairs. Each down-
converted pair consists of an ordinary and extraordinarily
polarized photon corresponding to horizontal (H) and
vertical (V) in our setup. Two SMFs for 810 nm define
two spatial modes matched to the pump mode to optimize
the collection [34]. A half-wave plate (λ=2) and a pair of

compensation crystals (CC) take care of the temporal and
transversal walk-off [17] and allow us to adjust the phase
between the two decay components to obtain a singlet
state jΨ−i ¼ 1=

ffiffiffi

2
p ðjHiAjViB − jViAjHiBÞ.

Film polarizers (specified extinction ratio 104) perform
the basis choice and polarization projection. Photons
are detected by avalanche photo diodes (APDs, quantum
efficiency ≈40%) and corresponding detection events from
the same pair identified by a CU if they arrive within
≈� 1.2 ns of each other.
To arrive at a very clean singlet state, we carefully align

the photon pair collection to balance the two photon pair
contributions jHVi and jVHi and adjust their relative
phase with the CC. Furthermore, we minimize contribu-
tions from higher-order parametric conversion processes
[35] by restricting the pump power below 7 mW, leading
to average detection rates of ð4.84� 0.20Þ × 103 s−1 and
ð3.45� 0.25Þ × 103 s−1 at the two the detectors (uncor-
rected for dark counts), resulting in an accidental coinci-
dence rate of 0.020� 0.017 s−1. The rate of coincidence
events depends on the orientation of the polarizers, as
expected, and, in our measurements, ranges from a mini-
mum of 26 s−1 to a maximum of 217 s−1. The detectors
exhibit dark count rates of 91.7 and 106.2 s−1, respectively.
We test the quality of polarization entanglement by

measuring the polarization correlations in the �45° linear
polarization basis. With interference filters (IFs) of 5 nm
bandwidth (FWHM) centered at 810 nm, we observe a
visibility V45 ¼ 99.9� 0.1%. The visibility in the natural
H=V basis of the type-II down-conversion process also
reaches VHV ¼ 99.9� 0.1%. This indicates a high quality
of polarization entanglement; the uncertainties in the
visibilities are obtained from propagated Poissonian count-
ing statistics.
Because of imperfections in the state generation and

errors in the setting of the polarizers, the setting θ ¼ 22.5°
may not yield the maximum possible violation. In order to
observe the largest possible violation and get as close as
possible to the Tsirelson bound, we optimized the angular
settings of the polarizers.
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FIG. 1 (color online). Selected experimental tests of the CHSH
Bell inequality with results close to the Tsirelson (T) and
Grinbaum (G) bounds in photonic systems (circles), atoms and
ions (diamonds), Josephson junctions (square), and nitrogen-
vacancy centers in diamond (triangle). Numbers represent the
references.

FIG. 2 (color online). Schematic of the experimental setup.
Polarization correlations of entangled-photon pairs are measured
by film polarizers (POL) placed in front of the collection optics.
All photons are detected by silicon avalanche photodetectors DA
and DB and registered in a coincidence unit (CU).
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The optimization starts by setting a ¼ 0°. This provides
the initial reference axis and corresponds to a0. Rotating b
and recording the rate of coincidences, we identify the
angles b00 and b01 that better match the expected correlation
values. Setting b ¼ b00, we repeat a similar procedure for a,
obtaining a00 and a01. This procedure converged to the
resolution of the rotation motors (verified repeatability and
resolution 0.1°). For our experiment, the optimal angles are
a00 ¼ 1.9°, b00 ¼ 22.9°, a01 ¼ 46.8°, and b01 ¼ 67.7°.
Each of the correlations E in Eq. (2) is estimated from

coincidence counts N between A and B,

E ¼ Nþþ − Nþ− − N−þ þ N−−

Nþþ þ Nþ− þ N−þ þ N−−
: ð3Þ

For evaluating how close we can come with the test of the
CHSH Bell inequality to the Tsirelson bound with a known
uncertainty, we need to integrate for a sufficiently long time
to acquire the necessary counting statistics, assuming we
have the usual Poissonian statistics implied by the time
invariance of our experiment. We collect coincidence
events for each of the 16 settings required to evaluate S
for 1 min and then repeat again the whole set. Within 312
such complete sets, we registered a total of 33 184 329 pair
events. As a result, we obtain in this experiment, via
Eqs. (1) and (3), a value of S ¼ 2.82759� 0.00051 or a
separation of 2

ffiffiffi

2
p

− S ¼ 0.00084� 0.00051 from the
Tsirelson bound.
The uncertainty we report on this quantity has several

contributions. In the following, we go through those we
could identify.
Counting statistics.—The parametric down-conversion

process delivers detection events randomly without any
specific dynamics. Therefore, the uncertainties in the coinci-
dence eventsN entering the correlation functionsE viaEq. (3)
show a Poissonian statistics. The contribution from this
propagated through Eqs. (3) and (1) is ΔSP ¼ 4.9 × 10−4.
Detector efficiency.—It is reasonable to assume that the

quantum efficiency of silicon APDs remains stable over the
time necessary for each measurement of a correlation E,
approximatively 10 min. Single event rates detected for this
experiment, approximatively 5000 s−1, are low enough
so that the response of the detector is, effectively, linear.
Thus, we do not assign any uncertainty in S to any
efficiency drift in the detectors.
Detector dead time.—The passively quenched silicon

APDs we used have a dead time of approximately 1.6 μs.
Fluctuations in the total acquisition time due to the dead
time are proportional to the statistical fluctuations in count
rate, i.e., the square root of the number of single detection
events. Propagating this uncertainty to the calculated value
of S, we obtain an uncertainty ΔSD ¼ 5.4 × 10−7.
Timing uncertainty.—The counting intervals of 60 s are

defined by a hardware clock in a microcontroller, with a
maximum time uncertainty of 100 ns. This time jitter

contributes an uncertainty ΔST ¼ 4.7 × 10−11. The temper-
ature dependence of the reference clock is also a source of
timing uncertainty. The maximum frequency drift of this
clock we measured in a similar thermal profile against a
rubidium-stabilized reference oscillator is in less than
0.1 ppm (part per million), leading to an uncertainty
of ΔSC ¼ 2.8 × 10−9.
Angular position of polarizers.—From the angular

uncertainty of 0.1° of the polarizer rotation stages, we
estimate a contribution ΔSR ¼ 1.2 × 10−4.
The resulting uncertainty quoted above is obtained via

ΔS ¼ ðΔS2P þ ΔS2D þ ΔS2T þ ΔS2RÞ1=2. This analysis sug-
gests that ΔS is dominated by counting statistics, i.e., the
total number of registered count events. Our experiment
has certainly systematic uncertainties; for example, we do
observe an effective setting-dependent variation of the
detection efficiency due to small wedge errors in the film
polarizers in front of the single mode optical fiber collec-
tion optics on the order of a few percent. However, any bias
of this kind lowers the value of S (attacks on detectors
excluded [36], i.e., under the fair sampling assumption).
Conclusion.—The result of our experiment violates

Grinbaum’s bound by 4.3 standard deviations and con-
stitutes the tightest experimental test of Tsirelson’s bound
ever reported. Therefore, it shows no evidence in favor of
the thesis that quantum theory is only an effective version
of a deeper theory and reinforces the thesis that quantum
theory is fundamental and that the Tsirelson bound is a
natural limit that can be reached. This conclusion strength-
ens the potential value of those principles that predict
Tsirelson’s bound [5–7] for explaining the natural limits of
correlations in all scenarios. The possibility of experimen-
tally touching Tsirelson’s bound as predicted by quantum
theory also has important consequences for cryptographic
security, since a necessary and sufficient condition for
certifying probability distributions independent of the
results of an eavesdropper in a device-independent scenario
[37] is that the observed probabilities are exactly the
ones corresponding to the Tsirelson bound [29]. It is
also important for the certification of a variety of physical
properties based solely on the assumption of nonsignaling
(i.e., without making assumptions on the initial state of the
system or the inner working of the measurement devices).
In this respect, the degree of violation of the CHSH Bell
inequality can be used to certify the amount of randomness
[30]. The higher the violation, the larger the amount of
certified randomness. Reaching the Tsirelson bound can
also be used to certify that the state being measured is a
maximally entangled state and/or that the local measure-
ments are of the type represented in quantum theory by
anticommutating operators [31,38]. This can be adapted to
practical methods to estimate the fidelity of the maximally
entangled estates [32]. Finally, saturating the Tsirelson
bound can be used to certify that a general quantum
computation was actually performed [33].
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