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Smoothing is an estimation method whereby a classical state (probability distribution for classical
variables) at a given time is conditioned on all-time (both earlier and later) observations. Here we define a
smoothed quantum state for a partially monitored open quantum system, conditioned on an all-time
monitoring-derived record. We calculate the smoothed distribution for a hypothetical unobserved record
which, when added to the real record, would complete the monitoring, yielding a pure-state “quantum
trajectory.” Averaging the pure state over this smoothed distribution yields the (mixed) smoothed quantum
state. We study how the choice of actual unraveling affects the purity increase over that of the conventional
(filtered) state conditioned only on the past record.
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Estimation theory is used to assignvalues to parameters of
interest, whose true values are unknown, using the available
data. These parameters may evolve dynamically, and new
data may arrive dynamically, through a continuous meas-
urement process. Estimation in this instance is nontrivial
because there can be noise associatedwith themeasurement,
noise affecting directly the dynamical system due to its
environment, and initial uncertainty in the parameters.
Optimal estimation theory can be formulated using the
Bayesian approach to statistics, whereby the observer’s
knowledge of the parameters is described by a conditional
probability distribution ℘C, also known as a Bayesian state.
If this state is conditional onmeasurements at earlier times, it
is called a filtered state ℘F, while if it is conditional on all-
time (both earlier and later) measurements, it is called a
smoothed state ℘S. Smoothing uses more complete infor-
mation than filtering, and so typically delivers a probability
distribution that is purer (that is, having less entropy).
In the flourishing and important area of quantum

estimation theory [1–12], much has been learnt from
classical estimation theory. The analogy between quantum
states and classical Bayesian states has been fruitful even in
quantum foundations [13–15]. In particular, the stochasti-
cally evolving conditioned state ρC of an open quantum
state, as introduced by physicists [16–21] and applied in
quantum control [1,22–29], is now understood to be
analogous to the classical filtered state [25,30–34] ℘F
(and so for clarity we write it as ρF). However, the situation
is very different regarding smoothing.
The term “quantum smoothing” was introduced by Tsang

[35,36] in 2009 to mean smoothed estimation of classical
parameters that affect the evolution of a quantum system,
using the results of measurements on that system. It has been
shown to be useful to the problem of estimating a stochas-
tically varying optical phase using the all-time photocurrent
record, both theoretically [37,38] and experimentally [39,40].

It has also been applied to the problem of estimating an
unknown result from a measurement on a quantum system at
one time, using records obtained both before and after that
time, again both theoretically [41] and experimentally [42].
However, none of the above define a quantum smoothed
state—that is, a positive operator ρS that is analogous to a
Bayesian smoothed state ℘S. There is a good reason for this
lack, which is most easily stated in the Heisenberg picture
[35]: quantum operators for a system at a given time commute
withoperators representing the results of earliermeasurements
on that system, but do not commute with operators represent-
ing the results of later measurements on that system [1].
In this Letter we show that there is a situation in which it is

possible to define quantum state smoothing, producing a
positive state ρS conditioned on both earlier and later results.
The situation is that of open quantum systems under partial
observation, which is the typical situation experimentally
[26,28,29]. The system has couplings to several baths
(all assumed Markovian). An experimenter, Alice, is able
tomonitor some of them, yielding the recordO she observes.
Other baths are not monitored by her, but hypothetically they
could be monitored by another party, yielding results U
unobserved byAlice. The “true” state ρT conditioned on both
observed (O) and unobserved (U) records would be pure,
while that conditioned only on O is mixed. The crucial
point is that the record U, comprising classical variables
(c numbers), can be estimated by applying smoothing to the
record O, and in this way Alice can obtain a smoothed
quantum state ρS. As in the classical case, this is typically
purer than ρF, and a better approximation to ρT .
We first review the necessary theoretical background.

Then we explain how our smoothed quantum state ρS is
quite different from the “past quantum state” (actually a
pair of operators) introduced in Ref. [41]. We also show
that our approach subsumes classical state estimation by
smoothing, also known as the hiddenMarkovmodel (HMM)
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technique [43]. A HMM is applicable to quantum systems
onlywhen they are effectively classical (i.e., always diagonal
in a particular basis) as in Refs. [44–46]. We apply our
method to a genuinely quantum system (i.e., onewhich is not
diagonal in a fixed basis)—a coherently driven two-level
atom, the radiation from which is partly observed. We take
the known record to be generated by homodyne detection,
and the unknown record to be that corresponding to photon
absorption, as this is the most intuitive picture of what
happens to photons that are lost into the laboratory surround-
ings. These lost photons result in impurity in the standard
(filtered) conditioned system state. We show that our
smoothing technique can, on average, eliminate up to
26% of this impurity. Our investigations shed light on
how well we can know the trajectory of a partially observed
open quantum systems, and the relation between the quan-
tum and classical versions of state smoothing.
Types of estimation.—Consider a classical dynamical

system described by parameters xt (bold font indicates a
vector of parameters) which is monitored to yield a noisy
output at each time rt. We denote a measurement record
RΩ ¼ frt∶t ∈ Ωg, where Ω ⊆ ½t0; T� is typically some
finite time interval. Bayesian estimation involves data
processing to infer the conditional classical state

℘RΩ
ðxτÞ≡ Pr½xtrue

τ ¼ xτjRΩ;℘0�; ð1Þ
where ℘0 describes the a priori statistics of x at the initial
time t0. It is also useful to define the unnormalized state

~℘RΩ
ðxτÞ≡ ℘RΩ

ðxτÞ
℘ðRΩj℘0Þ
℘ostðRΩj℘0Þ

∝ ℘ðRΩ;xτj℘0Þ: ð2Þ

Here, the ℘ðRΩj℘0Þ is the actual distribution forRΩ, while
℘ostðRΩj℘0Þ is an “ostensible” distribution for it—it is
positive and normalized, but is otherwise arbitrary and does
not depend on xt [47].
There are three types of estimation worth distinguishing

[48,49]: filtering, retrofiltering (as we call it), and smooth-
ing (see Fig. 1). If—as in feedback control problems—for
the time of interest τ there is only access to earlier results,
R⃖τ ≡R½t0;τÞ, the optimal protocol is filtering: ℘FðxτÞ≡
℘R⃖τ

ðxτÞ. If there is access only to later results, ~Rτ ≡R½τ;TÞ,

the optimal protocol is retrofiltering: ℘RðxτÞ≡ ℘ ~Rτ
ðxτÞ. As

its name implies, this is simply the time reverse to filtering,
but starting with an uninformative final state ℘ðxTÞ ∝ 1.

Finally, if the all-time record R
↔ ≡R½t0;TÞ is available, with

t0 < τ < T, then all the information can be utilized by the
technique of smoothing: ℘SðxτÞ ¼ ℘

R
↔ðxτÞ. This combines

filtering and retrofiltering, using unnormalized states [36]:

℘SðxτÞ ¼
~℘RðxτÞ ~℘FðxτÞR
dx0

τ ~℘Rðx0
τÞ ~℘Fðx0

τÞ
: ð3Þ

Here, one of the states (most conveniently the retrofiltered
one) is defined using an uninformative prior, ℘0 ∝ 1, to
prevent double counting of the a priori information.
Quantum analogues of (retro)filtering.—An extension of

these results to quantum mechanics has been done partially.
Quantum trajectory theory [16] is the analogue of classical
state filtering. A quantum trajectory describes the path (in
“density operator space”) of the state of the quantum system
through time, conditioned on the measurement result rt in
each infinitesimal interval ½t; tþ dtÞ. Note that the path may
be continuous (quantum diffusion) or discontinuous (quan-
tum jumps) [1,16]. This process is describedby a set (indexed
by rt) ofmeasurement operations (completely positivemaps)
Mrt , that evolve the state forward in time [47]:

~ρFðtþ dtÞ ¼ Mrt ~ρFðtÞ: ð4Þ
Starting with ρðt0Þ ¼ ρ0, this procedure generates the state
conditioned on the whole past record: ~ρFðτÞ ¼ ~ρR⃖τ

ðτÞ.
This is an unnormalized state (as indicated by the tilde),
analogous to Eq. (2). That is, the normalized version ρFðτÞ
generates the correct filtered probability distribution ℘FðxτÞ
for any system observable X̂τ, while

Tr½~ρFðτÞ�℘ostðR⃖τjρ0Þ ¼ ℘ðR⃖τjρ0Þ: ð5Þ
The corresponding analogue for Bayesian state retro-

filtering has been set out in Ref. [35]; it is the solution of the
adjoint of Eq. (4),

ÊRðtÞ ¼ M†
rt ÊRðtþ dtÞ: ð6Þ

In this case the effect operator evolves backwards from the
final uninformative effect ÊðTÞ¼I towards ÊRðτÞ≡Ê ~Rτ

ðτÞ,
conditioned on the record ~Rτ in the future of τ. This

solution Ê ~Rτ
ðτÞ determines the statistics of ~Rτ:

Tr½ÊRðτÞρτ�℘ostð ~RτjρτÞ ¼ ℘ð ~RτjρτÞ: ð7Þ
Quantum smoothing?—A naive approach to construct a

quantum smoothed state, given the quantum analogues of
filtering ρF and retrofiltering ÊR, would be to combine them
directly as in Eq. (3) so that ρSðτÞ ∝ ρFðτÞÊRðτÞ. However,
as pointed out in Ref. [35], the result is not in general
Hermitian or (even if symmetrized) positive semidefinite.

Filtering Retrofiltering

Smoothing 

Observations 

FIG. 1 (color online). Classical estimation classes depending on
the measurement record considered relative to τ, time at which the
signal is to be estimated. (Adapted from Ref. [35]).
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Therefore, it cannot correspond to a physical state. As
discussed in the introduction, there is a deep reason for this,
which is why Tsang gave quantum smoothing the restricted
meaning of estimating an external classical parameter x.
The filtered state ρFðτÞ and the retrofiltered effect ÊRðτÞ

are sufficient to best estimate, from the all-time record R
↔
,

the result of any measurement performed on the system at
time τ. For this reason, Gammelmark et al. declared the pair
Ξ ¼ ðρF; ÊRÞ to be “the past quantum state” [41]. They did
not define a quantum state in the usual sense (i.e., a density
operator) combining the future and past information. While
our notion of quantum state smoothing also makes use of
filtered states and retrofiltered effects, it is quite different in
that: it applies only to partially observed open quantum
systems; it defines a quantum state in the usual sense; and it
can be compared directly to quantum state filtering by
measures such as purity, similarly to the classical case.
Quantum state smoothing.—The key idea for quantum

state smoothing is illustrated in Fig. 2. Consider an open
quantum system with two groups of output channels (b, c).
An observer Alice monitors the first group, b, yielding the

all-time measurement record O
↔
. A hypothetical observer

monitors the second group c, yielding a record U
↔

unob-
served by Alice. The true state of the system ρTðtÞ≡
ρO⃖t;U⃖t

ðtÞ is conditioned on both measurement records. If ρ0
is pure then ρTðtÞ will be pure for all times; no extra
conditioning could possibly give a better (more pure) state.
However Alice’s conditional state, calculated in the con-
ventional way (filtering),

ρFðtÞ≡ ρO⃖t
ðtÞ ¼ EU⃖tjO⃖t

½ρO⃖t;U⃖t
ðtÞ�; ð8Þ

will be mixed, because of the averaging over the unob-
served record—here EAjB½X� means the expected value of
X, averaged over A, for a given B. Note that this averaging
does not have to be done explicitly—it is implicit in the

quantum trajectory theory as in Eq. (4) and is independent
of how the channels c are monitored.
The crucial insight is that Alice can do better, when

averaging over U⃖t, by using information in the future of t, to
define a positive-definite smoothed quantum state

ρSðtÞ ¼ E
U⃖tjO

↔½ρO⃖t;U⃖t
ðtÞ�≡X

U⃖t

℘SðU⃖tÞρO⃖t;U⃖t
ðtÞ; ð9Þ

Here, ℘SðU⃖tÞ ¼ ℘
O
↔ðU⃖tÞ ¼ Pr½U⃖true

t ¼ U⃖tjO
↔
; ρ0� is the prob-

ability distribution for the unobserved record prior to t,

obtained by smoothing from the all-time observed recordO
↔
.

Note that℘SðU⃖tÞ yields exactly the same type of information
as the past quantum state of Ref. [41], except that it is more
general—it specifies the probability of a continuous mon-
itoring record U⃖, not just a result of a measurement at one

point in time, and is conditioned on another record, O
↔
,

covering the same time interval, not just records strictly
earlier and strictly later. Unlike the classical stochastic
process xt considered previously by Tsang [35], the record
U⃖t is of quantum origin—its statistics are undefined without
a quantum system. Nevertheless, it is still a time series of c
numbers with well-defined statistics and so there is no
conceptual problem in applying his theory of quantum
smoothing to obtain ℘SðU⃖tÞ, and, thereby, ρSðtÞ.
We now show how to calculate Eq. (9). For definiteness

and simplicity, we consider a single channel (b) yielding
homodyne photocurrent yt and a single channel (c) yielding
an unobserved photon count nt. These processes are related
to the dynamics of the quantum system via the joint
measurement operation Mnt;yt defined such that Myt ¼P

1
nt¼0 ℘ostðntjY⃖tÞMnt;yt , for a convenient choice of

℘ostðntjY⃖tÞ [47]. By standard techniques [1], Mnt;yt lets

us generate a typical sample of the all-time records O
↔ ¼ Y

↔

andU
↔

¼ N
↔true

. For all but one purpose (see below), the latter
is irrelevant, but using the former we calculate the filtered
state ρY⃖t

ðtÞ from Eq. (4) and the retrofiltered effect Ê ~Yt
ðtÞ

from Eq. (6), with Myt in place of Mrt [50]. Next, we

generate a large ensembleEost of randomsamples ofU
↔ ¼ N

↔
,

according to the ostensible distribution℘ostðntjY⃖tÞ. For each
sample we calculate an associated pure state ~ρY⃖t;N⃖t

ðtÞ,
conditioned on both records, from Eq. (4) with Mnt;yt in
place of Mrt [51].
Elementary manipulation of probabilities [47] gives

℘SðN⃖tÞ≡℘ðN⃖tjY
↔Þ∝℘ð ~YtjN⃖t; Y⃖tÞ℘ðN⃖tjY⃖tÞ. Using the

equations for multiple channels corresponding to Eq. (7),

℘ð ~YtjN⃖t; Y⃖tÞ ¼ Tr½Ê ~Yt
ρN⃖t Y⃖t

�℘ostð ~YtÞ; ð10Þ
and to Eq. (5),

FIG. 2 (color online). The quantum state smoothing problem: to
best approximate the unknown true state of a quantum system,
conditioned on both observed (O) and unobserved (U) records,
given access only to O. This requires one to estimate U⃖t up to

time t using the full record for O
↔

(before and after t).
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Tr½Ê ~Yt
~ρN⃖t Y⃖t

�℘ostðN⃖tjY⃖tÞ ¼ Tr½Ê ~Yt
ρN⃖t Y⃖t

�℘ðN⃖tjY⃖tÞ; ð11Þ
we finally obtain, from Eq. (9),

ρSðtÞ ∝
X

N⃖t

℘ostðN⃖tjY⃖tÞ × ρY⃖t;N⃖t
ðtÞTr½Ê ~Yt

ðtÞ~ρY⃖t;N⃖t
ðtÞ�: ð12Þ

We can approximate this weighted average over all possible
unobserved records using the ensembleEost drawn from the
appropriate ostensible distribution, as discussed in the
preceding paragraph. This is the method we use below
to find the smoothed quantum state.
Example.—Consider a two-level atom, with driving

Hamiltonian Ĥ ¼ ðΩ=2Þσ̂x in the interaction frame, and
radiative damping described by a Lindblad operator

ffiffiffi
γ

p
σ̂−

[1]. We take a fraction η of the fluorescence to be observed by
homodyne detection, so b̂ ¼ ffiffiffiffiffi

γη
p

σ̂−. The remainder is
absorbed by the environment, which we model as an unob-
served record of photon counts, as discussed above, with

ĉ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð1 − ηÞp

σ̂−. For a fixed Y
↔
we can compare ρS with ρF

on the interval ½0; T�.At the final timeρSðTÞ ¼ ρFðTÞbecause
there is no more future record ~YT to give extra information to
ρSðTÞ. Also, we take the initial state to be pure, ρ0 ¼ j1ih1j,
which guarantees that ρT is pure and that ρSð0Þ ¼ ρFð0Þ.
To evaluate the advantage gained by smoothing over

filtering, we use the purity,

P½ρCðtÞ� ¼ Tr½ρ2CðtÞ�; ð13Þ
where ρC could be either ρF or ρS. If (as is the case in

simulations) we know the true unobserved record N
↔true

we
can also calculate the fidelity of the conditioned state to the
true state ρTðtÞ ¼ ρY⃖t;N⃖t

trueðtÞ,
F½ρTðtÞ; ρCðtÞ� ¼ Tr½ρTðtÞρCðtÞ�: ð14Þ

It is easy to show [47] that these measures are related by

EfP½ρCðtÞ�g ¼ EfF½ρTðtÞ; ρCðtÞ�g ð15Þ
where the ensemble averages here are over the actual

distributions for N
↔true

and Y
↔
.

In Fig. 3(a) we show typical trajectories, for Y homodyne
[Φ ¼ π=2] for a randomly generated true state ρTðtÞ ¼
ρY⃖t;N⃖t

ðtÞ featuring one jump at t ≈ 1.8. In this, case, ρT , ρS,
and ρF are all confined to the Y-Z plane of the Bloch sphere,
as shown. We plot Eqs. (13)–(14) in Figs. 3(b)
and 3(c), respectively. It is notable from (b) that ρS
anticipates the jump in ρT and its uncertainty about the
timing of the jump leads to a lower purity in the region of the
jump than the nonanticipating ρF. Similarly, 3(c) shows that
the fidelity of ρS to ρT decreases below that of ρF prior to the
jump, but is higher after the jump. In Fig. 3(d) we see that if
there is no jump, the fidelity with ρT is always greater for ρS.
We confirm that smoothing enables better state estima-

tion on average by calculating the average purity, for 103

realisations of Y
↔
. Recall from Eq. (15) that higher purity

means higher fidelity with the true state. We plot this in
Fig. 4 for two different local oscillator phases: Φ ¼ π=2 (Y
homodyne) in 4(a) and Φ ¼ 0 (X homodyne) in 4(b).
Because the driving of the atom causes σ̂y to oscillate at a
frequenciesΩ ≫ γ, it is harder to track the state of the atom
using Y-homodyne detection, and the purity of the filtered
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FIG. 3 (color online). (a) Trajectories in the Bloch sphere for
our model system withΩ ¼ 20, γ ¼ 1, and η ¼ 10=11. The states
shown are ρF (filtered, blue), ρS (smoothed, purple) and ρT (true,
green) for a case where the true record includes a jump. We also
plot the purities (b) and fidelities with ρT (c) of these ρF and ρS.
The purities for a record with no jump are shown in (d). To
compute ρS we average over an ensemble of 104 hypothetical
unobserved records N

↔
.
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state is lower than for X-homodyne detection [52]. It is the
former case which shows the greatest improvement in
purity under smoothing: about 26% of the purity lost,
because of the unobserved radiation, is recovered in 4(a)
compared to about 12% in 4(b).
One can easily show [47] that our theory of quantum state

smoothing includes as a special case the HMM that applies
[41,44,45] to quantum systems that (unlike our atomic
example) have no coherences and so are effectively classical.
For genuinely quantum systems there are many questions
about state smoothing to explore, including the following:
what happens if one assumes the unobserved unraveling to be
different from photon counting; is there a relation between
quantum state smoothing and the “most probable path”
formalism of Refs. [53,54]; does theHMMinevitably emerge
in the classical limit, and does quantum smoothing neces-
sarily work best in that limit; and what experiments would
show uniquely quantum aspects of quantum state smoothing?

This research was supported by the Australian Research
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