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We consider the Rabi Hamiltonian, which exhibits a quantum phase transition (QPT) despite consisting
only of a single-mode cavity field and a two-level atom. We prove QPT by deriving an exact solution in the
limit where the atomic transition frequency in the unit of the cavity frequency tends to infinity. The effect of
a finite transition frequency is studied by analytically calculating finite-frequency scaling exponents as well
as performing a numerically exact diagonalization. Going beyond this equilibrium QPT setting, we prove
that the dynamics under slow quenches in the vicinity of the critical point is universal; that is, the dynamics
is completely characterized by critical exponents. Our analysis demonstrates that the Kibble-Zurek
mechanism can precisely predict the universal scaling of residual energy for a model without spatial
degrees of freedom. Moreover, we find that the onset of the universal dynamics can be observed even with a
finite transition frequency.
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Introduction.—Universality plays a key role for our
understanding of quantum phase transitions (QPT) in
interacting quantum systems [1]. While the concept of
universality is well established in equilibrium QPT, the
question of to what extent the concept of universality could
be extended to nonequilibrium dynamics of QPT remains
largely to be explored [2,3]. For a slow quench across a
QPT, the closing spectral gap at a critical point leads to a
breakdown of the adiabacity regardless of the quench rate.
The scaling of defect formation has been shown to be
entirely controlled by critical exponents and quench rate
through a successful application of the Kibble-Zurek mecha-
nism (KZM) [4–7], originally developed for classical phase
transitions, to QPT in short-range interaction models [8–12].
However, whether this scaling holds for fully connected
models [13], which lack spatial degrees of freedom, such as
the Dicke [14] or Lipkin-Meshkov-Glick (LMG)model [15],
remains an open problem [16–18].
The Dicke model considers a system of a quantized

single-mode cavity field uniformly coupled to N two-level
atoms. It exhibits a superradiant QPT in the thermodynamic
limit (N → ∞) [19–22]. While tremendous efforts have been
devoted to understand the QPT of the Dicke model both in
and out of equilibrium [19–27], a criticality of the Rabi
model [27–33], the most simplified version of the Dicke
model with N ¼ 1, has been hitherto largely overlooked.
Having only two constituent particles, the Rabi model is far
from being in the thermodynamic limit where a QPT
typically occurs; however, a ratio of the atomic transition
frequencyΩ to the cavity field frequency ω0 that approaches
infinity, Ω=ω0 → ∞, can play the role of a thermodynamic
limit [27] that allows the spectral gap to be precisely closed
at the critical point [1].
In this Letter, we first establish the theory of equilibrium

QPT of the Rabi model. At the core of our analysis is a
low-energy effective Hamiltonian that is valid forΩ=ω0 ≫ 1

and becomes exact in the Ω=ω0 → ∞ limit. We derive an
exact solution for eigenstates, an energy spectrum, expect-
ation values of relevant observables, and critical exponents
in the Ω=ω0 → ∞ limit. Our solution shows that there
exists a critical atom-cavity coupling strength gc beyond
which the Z2 parity symmetry is broken and the cavity field
is macroscopically occupied. Further, the effect of a finite
value of Ω=ω0 on the QPT is analyzed in the spirit of the
finite-size scaling analysis. The leading-order corrections to
the ground state energy, the excitation energy, the average
photon number, and the variance of cavity field quadratures
at the critical point are derived analytically, from which
finite-frequency scaling exponents are obtained. We also
perform an exact diagonalization and find an excellent
agreement with analytical results.
Our establishment of the equilibrium QPT allows us to

investigate the universality in the dynamics of the Rabi
model. In particular, we are interested in quench dynamics
where the system is initially prepared in the ground state and
the control parameter g is tuned towards the critical point
linearly in time with a quench time τq starting from g ¼ 0
[8–11,34–36]. On the one hand, we solve the dynamics
exactly in the Ω=ω0 → ∞ limit, and calculate the residual
energy as a measure of the degree of nonadiabacity, which
shows a power-law scaling with the quench time τq. On the
other hand, we obtain such a scaling solely from the critical
exponents found in the first part of the Letter. To this end, we
apply KZM to the adiabatic perturbation theory [9,34–36]
and the dynamical critical function method [17], independ-
ently. Both approaches give rise to the same universal scaling
that precisely predicts the exact dynamics, demonstrating
that the KZM can lead to a universal dynamics for a model
without spatial degrees of freedom.
Finally, we consider the same quench dynamics with a

finite value of Ω=ω0, and show that, as one decreases the
ratio Ω=ω0, there is a crossover from the universal scaling to
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a†aþð1=2Þð1þσzÞ�, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ�, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi

for g ≤ 1 are jϕm
npðgÞi ¼ S½rnpðgÞ�jmij↓i, with S½x� ¼

exp½ðx=2Þða†2 − a2Þ� and rnpðgÞ ¼ − 1
4
lnð1 − g2Þ.

The failure of Eq. (2) for g > 1 suggests that the number
of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið�αgÞ ¼ D†½�αg�HRabiD½�αg� with D½α� ¼ eαða†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið�αgÞ ¼ ω0a†aþ
~Ω
2
τ�z − ~λðaþ a†Þτ�x þ ω0α

2
g; ð3Þ

where τ�z ≡j↑�ih↑�j−j↓�ih↓�j¼ðΩ=2 ~ΩÞσz�ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼ ffiffiffiffiffiffiffiffiffi

ω0Ω
p

=2g and ~Ω ¼ g2Ω. Therefore, by
employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ �αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi� ¼
D½�αg�S½rspðgÞ�jmij↓�i, where rspðgÞ ¼ − 1

4
lnð1 − g−4Þ,

are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ �αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ� of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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HΩ
np ¼ Hnp þ

g4ω2
0

16Ω
ðaþ a†Þ4 þ g2ω2

0

4Ω
; ð5Þ

where the leading-order correction adds a quartic potential
for the cavity field. Although HΩ

np is not exactly solvable, a
variational method can be used to derive analytical expect-
ation values [42]. We find that, at the critical point, the
excitation energy vanishes and the characteristic length
scale diverges with a power-law scaling:

ϵgcðΩ=ω0Þ ¼ ω0

�
2Ω
3ω0

�
−1=3

;

ΔxgcðΩ=ω0Þ ¼
�
2Ω
3ω0

�
1=6

: ð6Þ

In addition, the leading-order correction for eG and nc
are given by eG;gcðΩ=ω0Þ ¼ ðω0=4Þð2Ω=3ω0Þ−4=3 and
nc;gcðΩ=ω0Þ ¼ 1=6ð2Ω=3ω0Þ−2=3. The exponents of these
scaling relations, the finite-frequency scaling exponents,
are found to be the same as the finite-size scaling exponents
of corresponding observable for the Dicke model [46] and
LMG model [47,48], which also have the same critical
exponent z and ν [49,50]. We perform an exact diagonal-
ization of Eq. (1) and show that the numerically obtained
scaling exponents precisely match the analytical results
[Fig. 1(d)].

Universal scaling for adiabatic dynamics.—Having
established the equilibrium QPT of the model, we are
now able to investigate the dynamics of the QPT. We
consider a protocol where the control parameter g is
changed linearly in time, gðtÞ ¼ gft=τq, with gf being
the final value. The system is initially in the ground state.
As gðtÞ approaches the critical point, the vanishing spectral
gap makes the relaxation time of the system diverge,
inevitably creating quasiparticle excitations irrespective
of how large the quench time τq is. Applying KZM
[2,4–11], we define a time instant t̂ that divides the
dynamics into the adiabatic and impulsive regime from
η2ðtÞ ¼ _ηðtÞ, where the accessible energy gap η is given as
η ¼ 2ϵnp for g < gc due to the parity symmetry. From

ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
, we find ĝ ∼ gc − ð4 ffiffiffi

2
p

ω0τqÞ−1=ðzνþ1Þ

[42], where the coupling instant ĝ≡ gðt ¼ t̂Þ moves away
from the critical point as one decreases the quench time
so that the impulsive regime widens. Note that we only
consider gðtÞ ≤ gc for simplicity [34–36].
The wave function at time t can be expressed in terms of

the instantaneous eigenstates of Hnp(gðtÞ); i.e., jΨðtÞi ¼P
mcmðtÞS½rnpðtÞ�jmi. Then, we apply the adiabatic per-

turbation theory [9,34,36] to calculate the residual energy
Er at the end of the quench, which measures the degree
of nonadiabacity, defined as Er ≡ hΨðτqÞjHnp(gðτqÞ)jΨ
ðτqÞi − EG(gðτqÞ). For a protocol that stays in the adiabatic
regime, i.e., gf ≪ ĝ, we obtain a scaling relation, Er ∝ τ−2q
[42], which is a typical scaling for the adiabatic dynamics
with a finite quench time for a gapped Hamiltonian. If the
protocol involves the impulsive regime, gf ∼ ĝ, we find that
the residual energy follows a universal scaling relation,

Er ∝ τ−zν=ðzνþ1Þ
q ; ð7Þ

that is, Er ∝ τ−1=3q since zν ¼ 1=2 [42]. A different way to
predict the universal scaling of Er based on KZM is to use
the dynamical scaling function approach [17], which
expresses the scaling relation in terms of the finite-
frequency scaling exponents. We confirm that it predicts
the same universal scaling relation as in Eq. (7) [42].
For short-range interaction models, the residual energy

due to a slow quench stems from spatial defects in order
parameter across a QPT, whose scaling has been success-
fully predicted by KZM [7,10,11]. However, it is not clear
whether KZM can predict the scaling of the residual energy
in fully connected models due to their lack of spatial
degrees of freedom. In fact, although the same scaling
relation with Eq. (7) has also been predicted for the Dicke
and LMGmodel [17], a numerical calculation with a finite-
size LMG model shows a significant discrepancy with the
universal scaling as it estimates Er ∝ τ−3=2q [16], raising
doubt on the applicability of the KZM to the fully
connected models [17]. Strictly speaking, one has to solve
the dynamics exactly in the thermodynamic limit for the
LMG or Dicke model, or equivalently in the Ω=ω0 → ∞
limit for the Rabi model, to test the validity of the universal

FIG. 1 (color online). Top panel: Exact solutions of the Rabi
model in the Ω=ω0 → ∞ limit as a function of the dimensionless
coupling strength g=gc for (a) the rescaled ground state energy eG
(solid line) and d2eG=d2g (red dashed line), (b) the excitation
energy ϵ (solid line) and the energy difference between the ground
and the first excited state (red dashed line) showing the ground
state degeneracy for g=gc ≥ 1, and (c) the variance of position Δx
(solid line) and momentum Δp (red dashed line) quadrature of the
cavity field, and ΔxΔp (dotted line). In (b) and (c), the scaling
relation near the critical point is indicated. Bottom panel: A
leading-order correction for finite Ω=ω0 at g ¼ gc for Δp, ϵ,
the order parameter nc, and eG from top to bottom, respectively.
The analytical results (lines) predict precisely the exact diagonal-
ization results (points) for all observables. The finite-frequency
scaling exponents for each observable are indicated.
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scaling relation, which is accomplished in the following
section.
Exact solution for adiabatic dynamics.—The exact low-

energy effective Hamiltonian given in Eq. (2) allows one to
numerically solve the slow quench dynamics of the Rabi
model, which involves only a small number of quasiparticle
excitations, in the Ω=ω0 → ∞ limit. The equation of
motion is given as i _aHðtÞ ¼ ½aHðtÞ; Hnp;HðtÞ�, where the
subscript H indicates the operators in the Heisenberg
picture. We express the cavity field operator at time t as
aHðtÞ ¼ uðtÞað0Þ þ v�ðtÞa†ð0Þ with an initial condition
uð0Þ ¼ 1 and vð0Þ ¼ 0, and juðtÞj2 − jvðtÞj2 ¼ 1, and
derive coupled differential equations for uðtÞ and vðtÞ:

i
ω0

duðtÞ
dt

¼
�
1 −

g2ðtÞ
2

�
uðtÞ − g2ðtÞ

2
vðtÞ;

−
i
ω0

dvðtÞ
dt

¼
�
1 −

g2ðtÞ
2

�
vðtÞ − g2ðtÞ

2
uðtÞ: ð8Þ

The residual energy in terms of uðtÞ and vðtÞ is given by

Er ¼ ω0jvðtÞj2 −
ω0g2f
4

juðtÞ þ vðtÞj2 − ϵnpðgfÞ − ω0

2
: ð9Þ

In Fig. 2(a), we plot Er at the end of the quench as a
function of τq for different values of the final coupling
strength gf in theΩ=ω0 → ∞ limit. For a protocol that ends
right at the critical point, gf ¼ gc, it precisely follows the
universal scaling given in Eq. (7). It confirms that the nearly
adiabatic dynamics of the QPT in the Rabi model can be
completely characterized by the critical exponents alone;

thus, it is universal. We note that the saturation of Er
observed for a short quench time, τq ≲ 1=ω0, corresponds
to sudden quench dynamics. As we change gf progres-
sively away from the critical point, gf < gc, the universal
scaling breaks down and the τ−2q scaling emerges, which is
precisely the scaling predicted using the adiabatic pertur-
bation theory in the adiabatic regime [42].
We find that the leading-order correction to the equation

of motion for finite Ω=ω0 adds an additional term,
fðu; vÞ ¼ ð3ω0=4ΩÞg4ðtÞðuþ vÞjuþ vj2, to the right-
hand side of both equations in Eq. (8) [42]. For a quench
that ends at the critical point gf ¼ gc, the leading-order
correction to the residual energy adds an additional term,
hðu; vÞ ¼ ð3ω2

0g
4
cÞ=ð16ΩÞjuþ vj4 − ðω0=4Þð2Ω=3ω0Þ−1=3,

to Eq. (9) [42]. In Fig. 2(b), where we reduce the ratioΩ=ω0

from infinity to 102 for gf ¼ gc, we observe a crossover
behavior for the residual energy virtually identical to
Fig. 2(a). This is because a finite value of Ω=ω0 opens
up an energy gap at gf ¼ gc whose effect is equivalent to
ending the protocol away from the critical point.
An interesting aspect of the crossover behavior for the

scaling of Er shown in Fig. 2(b) is that there is a range of
quench time τq at around τq ∈ ½10; 103� where the Er
closely follows the universal power law even for finite
values of Ω=ω0. By closer inspection, we find fits for the
slope of curves in Fig. 2(b), which corresponds to the
exponents of power-law scaling of Er, for a wide range of
quench times. As shown in Fig. 3(a), the exponents
converge to the universal scaling exponent −1=3 as one
increases the ratio Ω=ω0, showing that the onset of the
universal dynamics can be observed with finite Ω=ω0. The
convergence to the universal scaling implies that the energy
gap whose scaling is given in Eq. (6) is sufficiently small
to drive the system into the impulsive regime so that the
dynamics is strongly influenced by the nature of the critical
point. As the energy gap widens for smaller values of
Ω=ω0, the influence of the critical points gradually van-
ishes, leading to a crossover to τ−2q scaling. In Fig. 3(b), the
crossover of the scaling from τ−1=3q to τ−2q is further

FIG. 2 (color online). Residual energy Er as a function of the
quench time τq obtained by solving a nearly adiabatic dynamics
for (a) different values of the final coupling strength gf ranging
from gf ¼ 0.9gc to gf ¼ gc (from bottom to top) in the Ω=ω0 →
∞ limit and (b) different ratios Ω=ω0 ranging from Ω=ω0 ¼ 102

to Ω=ω0 → ∞ (from bottom to top) with a fixed final coupling
strength gf ¼ gc. For gf ¼ gc in theΩ=ω0 → ∞ limit, it precisely
follows the universal scaling relation (solid line), predicted by the
Kibble-Zurek mechanism. Both moving gf away from gc and
reducing the ratio Ω=ω0 result in a crossover from the universal
scaling to τ−2q scaling (dashed line).

FIG. 3 (color online). Exponents of power-law scaling τμq for
the residual energy Er presented in Fig. 2(b). (a) Fits obtained
for different ranges of the quench time ½τq1; τq2�. The values for
τq1ðq2Þ are indicated in the figure. The exponent μ converges to
the universal scaling exponent −1=3 for finite Ω=ω0. (b) Fits
obtained for a range of the quench time ½τqΔτq; τq=Δτq� as a
function of τq with a fixed log-scale interval log10 Δτq ¼
6.25 × 10−2. The crossover from μ ¼ −2 to μ ¼ −1=3 as one
increases Ω=ω0 is clearly demonstrated.
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elucidated by finding fits for a much shorter interval of τq,
which approximates the slope of the tangent line of graphs
in Fig. 3(b). Varying gf in the Ω=ω0 → ∞ limit shows
identical features shown in Fig. 3 [42].
Conclusion.—We have found an effective low-energy

description of the Rabi model that unveils the universality
of the model both in and out of equilibrium. Our analysis
shows that the superradiant QPT, which has been primarily
studied for systems of thermodynamically many atoms, can
as well be investigated with systems of a single atom. An
important advantage of the reduced degrees of freedom is
that solving the critical dynamics is more tractable; indeed,
we have been able to report a first confirmation of the KZM
prediction for a model without spatial degrees of freedom.
Together with an impressive ongoing progress of technol-
ogies to realize the interaction between a two-level system
and a single harmonic oscillator, we expect that the Rabi
model can serve as an excellent platform to study equi-
librium and nonequilibrium critical phenomena.
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