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We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and
insulators which incorporates the temperature dependence of the electronic structure. We show that the
Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-
dependent band structures can be derived from the present formalism by retaining only one-phonon
processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an
importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band
gaps in good agreement with experiment. The present approach opens the way to predictive calculations of
the optical properties of solids at finite temperature.
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In semiconductors and insulators exhibiting indirect
band gaps the optical transitions near the fundamental
edge require the absorption or emission of phonons in order
to fulfill the crystal momentum selection rule. This mecha-
nism is discussed in every introduction to solid state
physics [1,2]. The theory of phonon-assisted indirect
optical transitions was developed by Hall, Bardeen, and
Blatt (HBB) [3,4], and forms the basis for our current
understanding of phonon-assisted optical processes.
Despite the popularity of the HBB theory, only very

recently was this formalism combined successfully with
first-principles density-functional theory calculations [5]
powered by Wannier interpolation [6,7]. The work of
Ref. [5] stands as the most sophisticated calculation of
indirect optical absorption available today, yet it is not
entirely parameter free since an empirical shift of the
absorption onset at each temperature was needed in order
to achieve agreement with experiment. This correction was
unavoidable because the HBB theory does not take into
account the temperature dependence of band structures.
A consistent theory of temperature-dependent band

structures was developed by Allen and Heine (AH)
[8,9]. In recent years this approach was successfully
demonstrated and improved within the framework of
first-principles density-functional theory calculations
[10–13]. Given these recent advances it is natural to ask
whether the HBB theory of indirect absorption and the AH
theory of temperature-dependent band structures could be
combined in a more general formalism, in view of fully
predictive calculations of phonon-assisted optical processes
at finite temperature.
In this manuscript we show that the quasiclassical

method introduced by Williams [14] and Lax [15] (WL)
provides a unified framework for calculating optical
absorption spectra of solids, including phonon-assisted
absorption and electron-phonon renormalization on the
same footing. Indeed, we show that the HBB and AH

theories can be derived from the WL formalism by
neglecting electron-phonon scattering beyond one-phonon
processes. In order to demonstrate the power of the WL
approach we calculate from first principles the phonon-
assisted optical absorption spectrum of silicon at different
temperatures using a stochastic importance sampling
Monte Carlo method [16] and no adjustable parameters.
Our calculations are in very good agreement with exper-
imental spectra measured at several temperatures. We also
calculate temperature-dependent band gaps and find good
agreement with experiment.
The premise of the conventional HBB theory is that

electrons in solids experience a time-dependent potential
which arises from the oscillatory motion of the atoms
around their equilibrium positions. Following this
premise, indirect electronic transitions are obtained within
time-dependent perturbation theory to first order in the
atomic displacements [4]. This amounts to considering
optical transitions whereby the absorption of a photon
is accompanied by the emission or absorption of one
phonon.
At variance with the HBB point of view, in the WL

approach electrons and phonons are described on the same
footing, and optical excitations correspond to transitions
between Born-Oppenheimer product states of electrons and
quantum nuclei [14,15]. The quantized final vibrational
states are then replaced by a classical continuum, leading to
an expression for the optical absorption which only
involves the nuclear wave function of the initial state
[15]. This replacement can be justified using the adiabatic
approximation. The temperature dependence is then
obtained as a canonical average over the initial states of
the system. This theory was successfully employed to
explain the optical properties of cold lithium clusters [17]
and diamondoids [16].
The imaginary part of the WL temperature-dependent

dielectric function is given by
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ϵ2ðω;TÞ ¼ Z−1
X
n

expð−En=kBTÞhϵ2ðω; xÞin; ð1Þ

where ω is the photon frequency, kB the Boltzmann
constant, and T the temperature. Z is the canonical partition
function among the quantum nuclear states with energies
En, and hin stands for the expectation value taken over the
nth many-body nuclear wave function. ϵ2ðω; xÞ denotes
the imaginary part of the dielectric function evaluated with
the nuclei clamped at the positions specified by the set of
normal coordinates fxνg, which we indicate collectively as
x. In order to keep the notation light we label the normal
modes of vibration and the electronic states by integer
indices; accordingly, the following equations will refer to a
Born–von Kármán (BvK) supercell of the crystal unit cell.
An intuitive interpretation of Eq. (1) is that in the adiabatic
approximation the electronic and nuclear time scales are
decoupled, and the measured absorption spectrum is
described as an ensemble average over instantaneous
absorption spectra at fixed nuclear coordinates. In the
harmonic approximation Eq. (1) simplifies via Mehler’s
formula [18]:

ϵ2ðω;TÞ ¼
Z

ΠνdxνG½xν; hx2νiT �ϵ2ðω; xÞ; ð2Þ

where G½u; σ2� is a normalized Gaussian of width σ in the
variable u. hx2νiT ¼ ð2nν þ 1Þl2ν represents the mean square
nuclear displacement at the temperature T, with nν the
Bose-Einstein occupation factor of the mode with energy
ℏων at the temperature T, and lν the corresponding zero-
point amplitude [19].
For simplicity we calculate the dielectric function within

the independent-particle approximation, although the
present formalism is general and can be used with any
description of optical transitions at fixed nuclei. In the
electric dipole approximation we have [20]

ϵ2ðω; xÞ ¼
2π

mN

ω2
p

ω2

X
cv

jpx
cvj2δðεxc − εxv − ℏωÞ; ð3Þ

where m is the electron mass, ωp the plasma frequency, N
the number of electrons in the unit cell, and the factor of 2
is for the spin degeneracy. px

cv is the matrix element of the
momentum operator along the polarization direction of the
photon, taken between the valence and conduction Kohn-
Sham states jvxi and jcxi with energies εxv and εxc,
respectively. The superscripts indicate that these states
are calculated with the nuclei fixed in the configuration
specified by the normal coordinates x; the same quantities
evaluated at the equilibrium atomic positions will be
denoted without superscripts. Equation (2) was evaluated
within density functional theory using importance sampling
Monte Carlo integration in a BvK supercell, as described
below in the Methods.
In Fig. 1(a) we compare the optical absorption coef-

ficient of silicon calculated from first principles using
Eqs. (2) and (3) with the experimental spectrum, both at
300 K. The absorption coefficient was obtained as
κðω;TÞ ¼ ωϵ2ðω;TÞ=cnðωÞ, where c is the speed of light
and nðωÞ the refractive index. The spectrum calculated with
the nuclei clamped in their equilibrium positions [dashed
blue line in Fig. 1(a)] exhibits an onset around 3.3 eV,
corresponding to the direct Γ0

25v → Γ15c transition in
silicon. The subgap absorption between 1.1–3.3 eV
observed in experiments [21] is completely missing in this
calculation. At variance with this result, our WL spectrum
correctly captures indirect absorption [solid blue line in
Fig. 1(a)], and exhibits very good agreement with experi-
ment without any adjustable parameters. Since we are not
including excitonic effects, the strength of the E1 transition
is underestimated in our calculations, as can be seen at
energies around 3.3 eV in Fig. 1(a) [22]. The agreement

FIG. 1 (color online). (a) The absorption coefficient of bulk silicon at 300 K: calculation with the atoms clamped at their equilibrium
positions (blue dashed line), calculation using the WL method [Eq. (2), blue solid line], and experimental data from Ref. [21] (gray filled
discs). The thin vertical lines indicate the direct and indirect band gaps with nuclei in their equilibrium positions. (b) Temperature
dependence of the absorption coefficient of silicon: WL theory (solid lines) and experimental data for 78 K [23], 300 K [21], and 415 K
[24] (gray discs). The calculated spectra were broadened using Gaussians of width 30 meV, and truncated at the smallest excitation
energy in order to avoid artifacts.
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between theory and experiment in Fig. 1 remarkably
extends over 5 orders of magnitude.
In order to shed light on the ability of the WL theory to

capture indirect optical absorption we express the depend-
ence of the optical matrix elements on the atomic positions
using time-independent perturbation theory. To first order
in the atomic displacements we have

px
cv ¼ pcv þ

X0

nν

�
pcngnvν
εv − εn

þ gcnνpnv

εc − εn

�
xν
lν
; ð4Þ

where gmnν ¼ hmj∂V=∂xνjnilν is the electron-phonon
matrix element associated with the Kohn-Sham potential
V, and in the primed summation the terms n ¼ c, v are
skipped. The spectral range of indirect absorption corre-
sponds to photon energies ℏω < Ed

g , with Ed
g ¼ 3.3 eV

being the direct band gap of silicon. In this range direct
optical transitions are forbidden; therefore, from Eq. (4) we
have pcv ¼ 0. If we retain only one-phonon processes and
neglect the dependence of the electron energies on the
nuclear coordinates, Eqs. (2)–(4) yield

ϵ2ðω;TÞ ¼
2π

mN

ω2
p

ω2

X
cvν

����
X0

n

pcngnvν
εn − εv

þ gcnνpnv

εn − εv − ℏω

����
2

× δðεc − εv − ℏωÞð2nν þ 1Þ: ð5Þ

This expression is essentially the same as given by the
conventional HBB theory of indirect optical absorption [4],
and employed in the first-principles calculations of Ref. [5].
The only difference is that the HBB theory contains phonon
energies �ℏων in the denominators and the Dirac delta
functions, corresponding to phonon emission and absorp-
tion processes, respectively. In the WL approach these
terms are neglected since in the adiabatic approximation
ℏων ≪ εc − εv. In Fig. S1 [25] we show that the present
result agrees well with the indirect absorption spectrum of
silicon calculated using the conventional HBB theory
in Ref. [5].
In Fig. 1(b) we compare our calculated temperature

dependence of the indirect optical absorption line shape of
silicon with experiment. We focus on the energy range 1.1–
2.3 eV where the effect of excitonic spectral weight transfer
on the dielectric function is negligible. Our calculations are
in good agreement with experiment. In particular, the
theoretical spectra capture both the smooth increase of
the absorption coefficient with temperature, and the con-
current redshift of the absorption onset. We stress that the
observed redshift arises naturally in our calculations, in
contrast with the HBB theory where this effect needs to be
included empirically [5]. The slight loss of intensity near
the indirect edge at the highest temperature [spectrum at
415 K in Fig. 1(b)] results from the incomplete sampling of
multiphonon processes in our stochastic approach.

In order to understand the effect of temperature in the
WL approach we note that temperature enters the formal-
ism in two ways: first, in the Bose-Einstein factors
ð2nνþ1Þ in Eq. (5), as in the conventional HBB theory.
This term mainly modifies the absorption intensity. Second,
temperature enters in the electron-phonon renormalization
of the electronic band structure, leading to a temperature-
dependent shift of the absorption onset. The latter con-
tribution can be analyzed by rewriting the energies inside
the Dirac delta functions in Eq. (3) using time-independent
perturbation theory. The result, accurate to second order in
the atomic displacements, reads

εxc ¼ εc þ
X
ν

gccν
xν
lν

þ
X
μν

�X0

n

gcnμgncν
εc − εn

þ hcμν

�
xμxν
lμlν

;

ð6Þ
where hnμν ¼ hnj∂2V=∂xμ∂xνjnilμlν=2 is the Debye-
Waller electron-phonon matrix element [8,9]. If we evalu-
ate the average of εxc in Eq. (6) following the same
prescription as for the dielectric function in Eq. (2) we
obtain (up to third order in the displacements)

εcðTÞ ¼ εc þ
X
ν

�X0

n

jgcnνj2
εc − εn

þ hcνν

�
ð2nν þ 1Þ: ð7Þ

In the first term inside the square brackets we recognize the
Fan (or self-energy) electron-phonon renormalization; the
second term is the Debye-Waller renormalization [6,8–
10,12,13]. Both terms can be derived from a diagrammatic
analysis by considering only one-phonon processes [27].
Equation (7) represents precisely the AH theory of temper-
ature-dependent band structures, and explains the temper-
ature shift of the indirect absorption line shapes in Fig. 1(b).
From the calculated optical absorption spectra we can

extract the temperature dependence of the indirect and
direct band gaps of silicon, following the standard exper-
imental procedure. In fact, within the HBB theory the
absorption coefficient near the indirect edge goes like
ω−1ðℏω − Eg � ℏωνÞ2 [4,20]; therefore, the indirect gap
Eg is straightforwardly extracted from a linear fit to
ω1=2κðωÞ1=2. As expected, Fig. 2(a) shows that our calcu-
lated spectra follow a straight line when plotted as
ω1=2κðωÞ1=2. The intercept of this line with the horizontal
axis yields the indirect band gaps for each temperature, and
the results are shown in Fig. 2(b) for two fitting ranges,
0–1.5 eV and 0–2 eV. Single-oscillator fits to our data
using EgðTÞ ¼ Egð0Þ − aBf1þ 2=½expðΘ=TÞ − 1�g fol-
lowing Ref. [28] gave a zero-point renormalization of aB ¼
60–72 meV and an effective temperature Θ ¼ 368–494 K
for the two ranges considered. These values are in good
agreement with the experimental data 62 meV and 395 K,
respectively [29].
In Fig. S3 [25] we show that the WL spectrum can also

be used to extract the temperature dependence of the direct
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band gap of silicon using standard line shape analysis of
second-derivative spectra. Also in this case we obtain good
agreement with experiment. Overall the agreement between
theory and experiment in Figs. 1, 2, and Fig. S3 [25]
provides strong support to the validity of the WL theory for
first-principles calculations of phonon-assisted optical
absorption spectra.
In future work it will be important to test the role of

additional correction terms, such as nonadiabaticity [12],
quasiparticle corrections [13], and anharmonicity [31].
While these further refinements will modify the precise
values of the zero-point renormalization of the band gap, it
is expected that they will not change any of the features of
the line shapes in Fig. 1.
The stochastic approach employed here is remarkably

efficient in sampling the vibrational phase space, to the
point that the optical spectrum can be calculated using a
single configuration of the nuclei (Fig. S4 [25]). This is an
unexpected finding and warrants separate investigation.
While the present method lacks the elegance of standard
density-functional perturbation theory approaches [32], it
comes with distinctive advantages: (i) the electron-phonon
coupling is included to all orders, (ii) the method can be
used in conjunction with higher-level theories, such as
hybrid functionals [33,34] and the GW or Bethe-Salpeter
method [35], and (iii) the anharmonicity of the potential
energy surface can be incorporated by using the appropriate
nuclear wave functions [36].
In conclusion, we have demonstrated a new theory of

phonon-assisted optical absorption in solids, based on the
Williams-Lax quasiclassical approximation. This theory
incorporates for the first time the temperature-dependent
electron-phonon renormalization of the electronic structure,
and enables calculations of optical spectra at finite temper-
ature over a wide spectral range. Our stochastic approach is

efficient and easy to implement on top of any electronic
structure package. The present Letter opens the way to
systematic calculations of optical spectra of semiconduc-
tors and insulators at finite temperature.
Methods.—The calculations were performed within

density functional theory in the local density approxima-
tion [37,38], using plane-wave basis sets and norm-
conserving pseudopotentials [39] as implemented in the
Quantum ESPRESSO suite [40]. We obtained vibrational
frequencies and eigenmodes via the frozen-phonon method
[41,42]. The optical matrix elements including the non-
local components of the pseudopotential [43] were evalu-
ated using Yambo [44]. Calculations with or without the
nonlocal components of the pseudopotential are compared
in Fig. S1 [25]. In order to address the band-gap problem
we used a scissor correction Δ ¼ 0.75 eV in all calcu-
lations, close to the GW value of Ref. [45]. The nonlocality
of the scissor operator was taken into account in the
oscillator strengths [43] via the renormalization factors
ðεc − εvÞ=ðεc − εv þ ΔÞ, thereby ensuring that the f-sum
rule be correctly fulfilled. A comparison between the
absorption spectra calculated with or without the scissor
correction is shown in Fig. S5 [25]. We averaged over the
atomic configurations using importance sampling
Monte Carlo integration [16]. The estimator [46] of
ε2ðω;TÞ in Eq. (2) was obtained using configurations
generated from a random set of normal coordinates fxνg,
as determined from the quantile function of the Gaussian
distribution, xν ¼ ð2hx2νiTÞ1=2erf−1ð2t − 1Þ [47]. The t
values (one for each normal coordinate, 0 < t < 1) were
generated via Sobol low-discrepancy sequences [48] by
skipping the first 100 steps. We found that 5–8 atomic
configurations are enough to converge the spectra at high
or low temperature, respectively. Figure S4 [25] shows that
even using a single configuration the spectrum is already

FIG. 2 (color online). (a) Extraction of the temperature-dependent indirect band gap of silicon using line shape analysis. The
calculated ½ωκðωÞ�1=2 at each temperature are shown as blue lines, and the corresponding linear fits as thin black lines. The intercepts of
the straight lines with the horizontal axis give the band gaps. The linear fits were determined in the energy range 0–2 eV.
(b) Temperature-dependent indirect band gap of silicon: the band gaps extracted from the line shape analysis in (a) using linear fits in the
ranges 0–2 eV and 0–1.5 eV are shown as blue filled discs and open circles, respectively. Gray filled discs are experimental data from
Ref. [30]. The solid lines are single-oscillator fits to the calculated data, and the dashed lines are the corresponding high-temperature
asymptotes. Figure S2 [25] shows the sensitivity of the band gaps to the fitting range. The shading is a guide to the eye and can be taken
as the uncertainty of the theoretical band gaps.
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converged. The results presented in Figs. 1 and 2 were
obtained using a 8 × 8 × 8 BvK supercell of the silicon
unit cell. We sampled the Brillouin zone of the supercell
using 30 random points with weights determined by a
Voronoi analysis [49]. Convergence tests with respect to
the supercell size and Brillouin zone sampling are shown
in Fig. S6 [25]. In Fig. 2(a) the spectrum was calculated
using a Gaussian broadening of 30 meV; in Fig. S4(b) [25]
we show that even when using a broadening of only 1 meV
the spectra remain essentially unaltered. Figure S7 [25]
shows that the variation of the band gap due to the thermal
expansion of the lattice [26] is smaller than 5 meV up to
500 K, and can be neglected.
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