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We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model
and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The
transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other
models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the
ground state energy density, which is a function of the loop, experiences a nonanalytical point when the
winding number of the corresponding loop changes. The winding number can serve as a topological quantum
number of the quantum phases in the extended quantum Ising model, which sheds some light upon the
relation between quantum phase transition and the geometrical order parameter characterizing the phase
diagram.
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Introduction.—Characterizing the quantum phase transi-
tions (QPTs) is of central significance to both condensed
matter physics and quantum information science. QPTsoccur
only at zero temperature due to the competition between
different parameters describing the interactions of the system.
A quantitative understanding of the second-order QPT is that
the ground state undergoes qualitative changes when an
external parameter passes through quantum critical points.
There are two prototypical models, the Bose-Hubbard

model and transverse-field Ising model, based on which the
concept and characteristic of QPTs can be well demon-
strated. However, among the two, only the transverse-field
Ising model is exactly solvable [1], so as to be a unique
paradigm for understanding the QPTs. Recently, more
attention has been paid to theoretical studies of exactly
solvable quantum spin models involving nearest-, next-
nearest-neighbor interactions, and multiple spin exchange
models, etc. [2–9]. Those models are closer to real quasi-
one-dimensional magnets [10–12] comparing to standard
ones with only nearest-neighbor couplings. Furthermore, it
has been shown that quantum spin models can be simulated
in an artificial quantum system with controllable parameters.
Quantum simulation of the spin chain can be experimentally
realized through neutral atoms stored in an optical lattice
[13,14], trapped ions [15–23], and NMR simulator [24]. This
system often serves as a test bed for applying new ideas and
methods to quantum phase transitions.
A fundamental question is whether QPTs in the Ising

model can have a connection to some topological character-
izations. It is interesting to note in this context that some
simple Ising models have been found to exhibit topological
characterization [25–28]. The purpose of the present work is
to shed some light upon the relation between QPTs and a
geometrical parameter characterizing the phase diagram,
through the investigation of a class of quantum Ising models.

In this work, we present an extended quantum Ising
model, which includes an additional three-body interaction.
It can be exactly solved by the routine procedure, taking the
Jordan-Wigner and pseudospin transformations. Based on
the exact solution, we investigate the QPT in this model.
We introduce a global order parameter, which is the
winding number for the loop specifying to a set of coupling
constants, in an auxiliary space. The ground state energy
density can be a function of the loop and its variation
experiences a nonanalytical point when the winding num-
ber of the corresponding loop changes. Then the relation
between QPTs and the geometrical order parameter is
established.
Extended Ising model and solutions.—We start our

analysis from the one-dimensional Ising model, which
has the Hamiltonian

H ¼
XN
j¼1

�
a

�
1þ γ

2
σxjσ

x
jþ1 þ
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2
σyjσ

y
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�
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�
1þ δ

2
σxj−1σ

x
jþ1 þ

1 − δ

2
σyj−1σ

y
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��
; ð1Þ

where σαj , for α ¼ x; y; z, are the usual Pauli matrices, and
periodic boundary conditions are assumed. Comparing
with the customary anisotropic XY model, there are addi-
tional three-site interactions σzjσ

x
j−1σ

x
jþ1 and σzjσ

y
j−1σ

y
jþ1,

which have the following two implications: it can be either
regarded as the conditional anisotropic XY-type coupling
between next-nearest-neighbor spins or the conditional
action of the transverse field. The ground state phase
diagram and correlation functions for this spin model
have been studied 40 years ago [29]. In the case of
g ¼ γ ¼ δ ¼ 0, the correlation function has been obtained
[2]. In addition, other types of Hamiltonians which contain
three-body interactions were also investigated [30–32].
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We will see that this model can be exactly solvable in
a simple way by the similar procedure for the simple
transverse-field Ising model [1,33,34]. For the sake of
simplicity, we only concern the case of even N; the
conclusion is available for the case of odd N in the
thermodynamic limit. As the same procedure performed
in solving the Hamiltonian without the additional term, we
take the Jordan-Wigner transformation [1]

σzj ¼ 1 − 2c†jcj; σyj ¼ iσxjσ
z
j; ð2Þ

σxj ¼ −
Y
l<j

ð1 − 2c†l clÞðcj þ c†jÞ; ð3Þ

to replace the Pauli operators by the fermionic operators cj.
We note that the parity of the number of fermions is a
conservative quantity and then the Hamiltonian equation (1)
can be written in the form

H ¼
�
Hþ 0

0 H−

�
; ð4Þ

where

Hþ ¼ H− − 2½bðc†Nc2 þ c†1cN−1 þ δc2cN þ δc1cN−1Þ
þaðc†Nc1 þ γc1cNÞ þ H:c:� ð5Þ

and

H− ¼
XN
j¼1

½ðg=2 − gc†jcjÞ þ aðc†jcjþ1 þ γcjþ1cjÞ

þbðc†jcjþ2 þ δcjþ2cjÞ� þ H:c: ð6Þ
are corresponding reduced Hamiltonians in the invariant
subspaces with an even and odd number of fermions.
Here Hþ represents a fermionic ring threaded by a half of
the flux quantum. In the following, we will focus on Hþ
since the ground state has even parity for any values of
parameters. Similarly, Hþ can be diagonalized by Fourier
and pseudospin transformations. Taking the Fourier trans-
formation

cj ¼
1ffiffiffiffi
N

p
X
k

ckeikj; ð7Þ

where k ¼ 2πðmþ 1=2Þ=N, m ¼ 0; 1; 2;…, N − 1, the
Hamiltonian Hþ can be expressed as a compact form

Hþ ¼ 4
X
k>0

~rðkÞ · ~sk; ð8Þ

~rðkÞ¼ð0;aγ sinkþbδsin2k;acoskþbcos2k−gÞ; ð9Þ
which represents a set of pseudospins f~skg in a two-
dimensional magnetic field ~r. The pseudospin is defined as

s−k ¼ ðsþk Þ† ¼ ckc−k; ð10Þ

szk ¼
1

2
ðc†kck þ c†−kc−k − 1Þ; ð11Þ

satisfying the SU(2) algebra, ½szk; s�k0 � ¼ �δkk0s�k0 , ½sþk ; s−k0 � ¼
2δkk0s

z
k0 . It is clear that the equivalent Hamiltonian equa-

tion (8) represents a system of spin ensemble in a monopole
field. These spins locate at the points on the loop of ~rðkÞ
defined in Eq. (9). In the following argument, we do not
restrict the shape of the loop. The obtained result is valid
for an arbitrary loop, which is schematically illustrated in
Fig. 1(a). The Hamiltonian equation (8) is easy to be
diagonalized by aligning all spins with the local magnetic
field, which is the essential of the Bogoliubov trans-
formation. In the thermodynamic limit, the ground state
energy density can be expressed by an integration

εg ¼ lim
N→∞

Eg

N
¼ −

1

2π

Z
π

−π
j~rðkÞjdk; ð12Þ

which corresponds to a loop tracing with the parametric
equation ~rðkÞ ¼ (0; xðkÞ; yðkÞ). In our case, the parametric
equation has the form

xðkÞ ¼ aγ sin kþ bδ sin ð2kÞ;
yðkÞ ¼ a cos kþ b cos ð2kÞ − g; ð13Þ

in the auxiliary space ðx; yÞ. Then we can use some simple
loops to represent the ground state of the Ising-like model.

FIG. 1 (color online). Schematic illustration of the equivalent
Hamiltonian equation (8), which represents a system of spin
ensemble in a monopole field. In the thermodynamic limit, the
ground state energy density becomes an integration corresponding
to a loop. (a) Noninteracting spins in a monopole field with the
strength being proportional to the radius. (b) Schematics of two
loops l and l0 described by the parametric equations involving
vectors ~rðkÞ and ~rðkÞ þ δ~rðkÞ, respectively. Here ~rðk1Þ represents
an arbitrary point on the l, while ~rðk1Þ þ δ~rðk1Þ represents the
corresponding point on the l0. The red arrow indicates δ~rðk1Þ, while
the blue arrow indicates the corresponding unitary vector r̂ðk1Þ. The
inner product between them δ~rðk1Þ · r̂ðk1Þ contributes to the
variation of εg. The loop l passes the origin at point ~rðkÞ with
k ¼ k0. The corresponding unitary vector r̂ðk0Þ is indefinite, which
is denoted as a solid blue circle. The indefiniteness of δ~rðk0Þ · r̂ðk0Þ
witnesses the QPT as well as the topological change of the loop:
enclosing the origin or not.
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It offers many types of graphs corresponding to different
kinds of Ising models. To demonstrate this point, we plot
several types of graphs in Fig. 2. It shows that two familiar
models, the transverse Ising model and anisotropic XY
model, correspond to two simple graphs, a circle and
ellipse, respectively. Rest models connect to more compli-
cated graphs. Furthermore, the ground state of each model
is naturally connected to a graph individually.
Quantum phase transition.—In this section, we inves-

tigate the QPToccurring in the extended Ising model and its
connection to the geometry of the corresponding loops. To
this end, we start with the change of the ground state energy
induced by varying the parameters. In general, the QPT
driven by the parameters fαg ðα ¼ a; b; γ; λ; gÞ can be
characterized by the derivative of the ground state density
with respect to α, ∂εg=∂α which experiences a nonanalytic
point at the critical point, leading to the divergence of the
second derivative of ground state energy density. We
investigate the signature of the QPT in an alternative way:
εg depends on the path of the integral, being a function of the
functions xðkÞ and yðkÞ. The parameters fαg drive the QPT
through the change of the functions xðkÞ and yðkÞ, or the
loop. In other words, one can consider the variations of
functions xðkÞ and yðkÞ instead of the change of the
parameters fαg. The first variation of the function εg½x; y� is

δεg ¼
Z �

δεg
δx

δxþ δεg
δy

δy

�
dk ¼ −

1

2π

Z
π

−π
r̂ðkÞ · δ~rðkÞdk;

ð14Þ

where r̂ðkÞ ¼ ~r=j~rj is the unitary vector of ~rðkÞ. It indicates
that the variation δεg is the summation of the path shifts
δ~rðkÞ along the direction of r̂ðkÞ. We are interested in the
case of the loop crossing the origin. At the origin, the unitary
vector r̂ðkÞ is indefinite, which leads to an indefinite
contribution to the variation δεg, indicating a nonsmooth
point. It is a signature of the QPT associated with a
topological change in the loop of the integration. So far,
we do not specify the shape of the loop and how the loop is
deformed. In our case, the variation δ~rðkÞ arises from the
continuous change of the parameters fαg. Then we have

δ~rðkÞ ¼
X
α

∂~rðkÞ
∂α dα ð15Þ

or explicitly

δxðkÞ ¼ sin kðγdaþ adγÞ þ sin ð2kÞðbdλþ λdbÞ;
δyðkÞ ¼ cos kdaþ cos ð2kÞdb − dg: ð16Þ

Considering the case with a ¼ γ ¼ 1, b ¼ λ ¼ 0 as an
example, the Hamiltonian equation (1) reduces to the
simplest transverse-field Ising model

HIsing ¼
XN
j¼1

ðσxjσxjþ1 þ gσzjÞ; ð17Þ

the ground state energy density of which corresponds to a
circle of the equation

x2 þ ðyþ gÞ2 ¼ 1: ð18Þ
The variation δεg from the case with g ¼ �1 is readily
expressed as

δεg ¼ −
dg
2π

Z
π

−π
½r̂ðkÞ · |̂�dk; ð19Þ

where |̂ denotes the unit vector of the y axis. It results
in δεg ¼ ∂εg=∂gdg, which shows that δεg accords with
∂εg=∂g as a witness of QPT.
We would like to point out that each loop contains

two characters, geometry (shape and position) and curve
orientation, which are determined by the corresponding
parameter equation. To characterize these two features,
we use a topological quantity, winding number, which is a
fundamental concept in geometric topology and widely
used in various areas of physics [35–38]. The winding
number of a closed curve in the auxiliary xy plane around
the origin is defined as

N ¼ 1

2π

Z
c

1

r2
ðydx − xdyÞ; ð20Þ

which is an integer representing the total number of times
that the curve travels clockwise around the origin. Then we

FIG. 2 (color online). (a)–(i) Labels of several types of graphs.
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establish the connection between the QPTand the switch of
the topological quantity.
Topological quantum number.—We calculate the wind-

ing numbers for various typical cases corresponding to
graphs in an auxiliary space with different topologies. In
Fig. 3, we plot the graphs of the ground state for typical
cases. The corresponding winding number and the relations
between graphs are presented. In each group, the first graph
is clockwise. The examples show that there are five

possible winding numbers �2, �1, and 0, which represent
five different phases.
To demonstrate the characteristics of these phases we

consider five typical cases, which correspond to the ground
states of systems hN with parameters in the following
limits: (i) b → ∞ and δ ¼ −1, the reduced Hamiltonian is
h−2 ¼ N−1 PN

j¼1 σ
z
jσ

y
j−1σ

y
jþ1, (ii) a → ∞ and γ ¼ −1,

h−1 ¼ N−1 PN
j¼1 σ

y
jσ

y
jþ1, (iii) g → ∞, h0 ¼ N−1PN

j¼1 σ
z
j,

(iv) a → ∞ and γ ¼ 1, h1 ¼ N−1 PN
j¼1 σ

x
jσ

x
jþ1, and

(v) b → ∞ and δ ¼ 1, h2 ¼ N−1PN
j¼1 σ

z
jσ

x
j−1σ

x
jþ1. The

corresponding ground states jG0;�1i of an even-number flip
subspace, represented in position space, are readily
obtained as

jG0i ¼
Y
j

j↓ij; ð21Þ

jG1i ¼
1ffiffiffi
2

p
�Y

j∈e
j↗ij

Y
j∈o

j↙ij þ
Y
j∈e

j↙ij
Y
j∈o

j↗ij
�
; ð22Þ

jG−1i¼
1ffiffiffi
2

p
�Y

j∈e
j↘ij

Y
j∈o

j↖ijþ
Y
j∈e

j↖ij
Y
j∈o

j↘ij
�
; ð23Þ

where σzjj↓ijðj↑ijÞ ¼ −j↓ijðj↑ijÞ, σxj j↗ijðj↙ijÞ ¼
j↗ijð−j↙ijÞ, σyj j↘ijðj↖ijÞ ¼ j↘ijð−j↖ijÞ, and e and
o denote the even and odd number of sites, respectively.
The ground states of h�2 are obtained from Eq. (8) and
expressed in an auxiliary space as

jG0
�2i ¼

Y
k>0

ð�i sin kj↑ik þ cos kj↓ikÞ; ð24Þ

where j↑ik and j↓ik are eigenstates of pseudospin operator
szk with 2szkj↑ikðj↓ikÞ ¼ j↑ikð−j↓ikÞ. It is a little compli-
cated to express states jG�2i in the position space in a
simple form. Here, we only give the expression for N ¼ 4n
(n ∈ N) [39],

jG�2i ¼ 2−ðN−2Þ=2XN=2

j¼0

ð�1Þjeiðπ=2Þ
P

2j
l¼1

ð−1Þlnl

×
Y

f
P

2j
l¼1

nl¼eveng
σ−nl j⇑i; ð25Þ

where j⇑i ¼ Q
N
l¼1 j↑il is the saturate ferromagnetic state.

As an example, the ground states for four-site systems h�2

are explicitly

jGN¼4
�2 i ¼ 1=2ðj↑i1j↑i2j↑i3j↑i4∓j↑i1j↓i2j↑i3j↓i4

∓j↓i1j↑i2j↓i3j↑i4 − j↓i1j↓i2j↓i3j↓i4Þ: ð26Þ

We employ the expected value of operators hρ,
hGλjhρjGλi, as local order parameters to characterize the

FIG. 3 (color online). The winding numbers for various
typical cases of corresponding graphs in an auxiliary space with
different topologies. Label ↑ (↓) denotes the increase (decrease)
of the parameters, which induce the transition between graphs.
(a)–(d) is the labels of different graphs.
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ground states jGλi (ρ; λ ¼ �2;�1; 0). By using the similar
analysis in [39], we have

hGλjhρjGλi ¼ −δλρ: ð27Þ

It indicates that the five ground states jGλi are in five
different phases. Then the winding number can be a reliable
topological quantum number to distinguish the quantum
phases.
Conclusion.—In summary, a class of exactly solvable

quantum Ising models presented in this Letter has obvious
topological characterization and indicates the existence of a
topological quantum number, which is the winding number
for the loop in a two-dimensional auxiliary space and
describes the quantum phases in the extended quantum
Ising model. This finding reveals the connection between
QPTand the geometrical order parameter characterizing the
phase diagram for a more generalized spin model, which
will motivate further investigation.
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