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Exciton dispersion as a function of center-of-mass momentum Q is essential to the understanding of
exciton dynamics. We use the ab initio GW-Bethe-Salpeter equation method to calculate the dispersion of
excitons in monolayer MoS2 and find a nonanalytic lightlike dispersion. This behavior arises from an
unusual jQj-term in both the intra- and intervalley exchange of the electron-hole interaction, which
concurrently gives rise to a valley quantum phase of winding number two. A simple effective Hamiltonian
to Q2 order with analytic solutions is derived to describe quantitatively these behaviors.
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An exciton is a neutral excitation of an interacting
electron system, consisting of a bound excited electron
and hole pair with energy depending on its center-of-mass
momentum, Q. In crystals, the exciton dispersion relation
(energy vs Q) forms an exciton band structure. In optical
absorption, the momentum of a photon is converted to
that of an exciton, resulting in a small Q exciton for
visible light. Recent model Hamiltonian calculations
predict that the dispersion of the lowest energy optically
active exciton bands in monolayer MoS2 form a Dirac
cone (as in graphene) due to the exchange interaction
coupling electron-hole states in different valleys (the
intervalley exchange) [1]. Another study based on a
tight-binding formulation of the Bethe-Salpeter equation
(BSE) approach hinted at also linear dispersion for the
lowest energy excitons near Q ¼ 0, although the dis-
persion relation (on a 45 × 45 finite-Q grid) was not
resolved at the length scale of the momentum of light
[2]. The effects of the interplay of inter- and intravalley
exchange and local fields are not explicitly investigated in
these model calculations, which also miss terms in both Q
and Q2 orders.
In this work, we calculate the exciton dispersion of

MoS2, a prototypical transition metal dichalcogenide
(TMD), from first principles, using the ab initio GW-
BSE method [3,4], and find a highly unusual low-energy
dispersion consisting of a nonanalytic v-shaped upper band
that is degenerate with a parabolic lower band at Q ¼ 0,
consistent qualitatively with extrapolation of previous
tight-binding results [2]. We show that the physical origin
of this highly nonanalytic behavior (the jQj dependence)
comes from jQj-dependent terms in both the intravalley and
intervalley exchange interaction, which arise from the
unique electronic structure and the quasi-2D nature of
the Coulomb interaction in atomically thin TMDs. Local-
field effects introduce additional interaction terms and are
responsible for the splitting of optically bright and dark

excitons. Moreover, the theory gives a valley quantum
phase of winding number two (or chirality two), which we
show should manifest in optical experiments as a phase
difference between the longitudinal and transverse
response. A similar winding number is found in
Ref. [1], although in this model Hamiltonian study, intra-
valley exchange is neglected resulting in a Dirac cone
dispersion.
Transition metal dichalcogenides are layered, weakly

coupled materials. In the 2H monolayer form, TMDs are
direct band gap semiconductors with the gap at the K and
K0 points of the 2D hexagonal Brillouin zone [5,6].
Because of a lack of inversion symmetry and the presence
of threefold rotational symmetry, a valley selective
response emerges: the K and K0 valley couples, respec-
tively, only to left or right circularly polarized light [7–10].
Moreover, as a result of confinement and reduced screen-
ing, excitons have very large binding energies [11–26].
The quasiparticle (QP) band structure of monolayer

MoS2 calculated within the GW approximation [3,15]
(see Supplemental Material [27]) is shown in Fig. 1. The
direct gap of 2.67 eV is at the K and K0 points. Spin-orbit
coupling splits the valence band edge by 147 meV and
the conduction band edge by 3 meV. Over an extended
range in the K and K0 valleys, sz, the spin of the electron
along the direction perpendicular to the layer is a good
quantum number [8]. Thus, the concept of singlet and
triplet exciton states is no longer well defined. Instead,
the electron-hole Hamiltonian or BSE matrix can be
decoupled into transitions between bands of like spin
[Figs. 1(b)–(1d)] that are optically allowed and transitions
between bands of unlike spin that are optically forbidden.
We calculate the exciton dispersion of both the like-
spin transition states and the unlike-spin transition states
within the BSE formalism following Ref. [4]. The resulting
exciton dispersion near Q ¼ 0 and Q ¼ K is shown in
Fig. 2. Figure 2 only presents exciton states involving
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predominantly transitions from the topmost valence band
(the v↑K and v↓K0 bands in Fig. 1), which is the so-called
A series in the literature. Similar results are obtained
for the spin-orbit split B series (see Supplemental
Material [27]).
In Fig. 2, near Q ¼ 0, the lowest energy exciton complex

shown is the “1s”-like states of the A series excitons, which
has a binding energy of 0.63 eV for the like-spin transition
states and 0.65 eV for the unlike-spin transition states. At
Q ¼ 0, the twofold degeneracy of the exciton states due toK
and K0 valley degeneracy is protected by the time-reversal
symmetry. Away from Q ¼ 0, for optically active like-spin
transition states, the degenerate bands split as jQj increases.
Consistent with previous model calculations [1,2,32,33], this
splitting of the like-spin transition states is due to intervalley
exchange. The exciton bands for unlike-spin states, which
have zero exchange interaction, remain doubly degenerate
(the blue lines in Fig. 2). However, contrary to previous
model predictions [1], our ab initio results do not find a
Dirac cone near Q ¼ 0 in the dispersion of the like-spin
transition 1s bands. In fact, we find a “v-shaped” nonanalytic
upper band with a velocity of 3 × 105 m=s or 0.001 c and
a parabolic lower band, with both bands increasing mono-
tonically with jQj down to the smallest sampled jQj of
4 × 10−3 Å−1, which corresponds to 0.3% of the distance
from Γ to K in the Brillouin zone.
We also calculate the dispersion of the intervalley excitons

[Fig. 2(b)]—i.e., an exciton with the electron and hole in
different valleys (with Q ¼ K)—and find that the unlike-
spin transition state is slightly lower in energy than the
similar exciton at Q ¼ 0 as a consequence of the spin-orbit
splitting of the conduction bands and the screened Coulomb
interaction (see Supplemental Material [27]).
We now provide the physical origin of the nonanalytic

behavior of the dispersion seen in Fig. 2(a) [closeup in
Fig. 3(a)]. The exciton dispersion is obtained from first
principles by solving the BSE [4,34] for electron-hole pair
excitations with finite center-of-mass momentum Q

ðEckþQ − EvkÞAS
vckQ þ

X
v0c0k0

hvckQjKehjv0c0k0QiAS
v0c0k0Q

¼ ΩS
QA

S
vckQ: ð1Þ

Here, S indexes the exciton states, AS
vckQ is the amplitude of

the free electron-hole pair consisting of an electron in
jckþQi and one missing from jvki, ΩS

Q is the exciton
excitation energy, EckþQ and Evk are the quasiparticle
energies, and Keh is the electron-hole interaction kernel.
The kernel consists of a direct term and an exchange term
[4]: hvckQjKehjv0c0k0Qi¼hvckQjKdþKxjv0c0k0Qi. The
exchange term is

hvckQjKxjv0c0k0Qi
¼
X
G

Mcvðk;Q;GÞvðQþGÞM�
c0v0 ðk0;Q;GÞ; ð2Þ

FIG. 1 (color online). (a) QP band structure of monolayer MoS2. Lowest energy transitions corresponding to electron-hole excitations
with momentum transfers of Q ¼ 0 and Q ¼ K are shown with the labeled arrows. (b)–(c) Schematics of interactions between two
electron-hole pairs with momentum near Q ¼ 0, corresponding to BSE matrix elements hvckQjHBSEjv0c0k0Qi for (b) two like-spin
transitions within one valley and (c) two like-spin transitions from different valleys. (d) Schematic of two electron-hole pairs with
momentum near Q ¼ K giving rise to BSE matrix elements for like-spin transitions.

FIG. 2 (color online). Exciton dispersion of monolayer MoS2
near (a) Q ¼ 0 and (b) Q ¼ K along the K–Γ–K0 direction. Red
(blue) lines indicate states arising from like-spin (unlike-spin)
transitions. The label A refers to states involving transitions from
the highest valence band at K=K0. “B” states involving transitions
from the second highest valence band are similar and shown in
the Supplemental Material [27].

PRL 115, 176801 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 OCTOBER 2015

176801-2



where G are reciprocal lattice vectors, v is the bare
Coulomb interaction, andM is defined asMnn0 ðk;Q;GÞ ¼
hnkþQjeiðQþGÞ·rjn0ki. The exchange term is only non-
zero for like-spin transitions (i.e., excitons with total spin
along z equal to zero). The direct term is

hvckQjKdjv0c0k0Qi
¼ −

X
GG0

M�
cc0 ðkþQ;q;GÞWGG0 ðqÞMvv0 ðk;q;GÞ; ð3Þ

where q ¼ k − k0 and W is the screened Coulomb
interaction.
The solutions of the BSE matrix are exciton states

jSQi ¼
P

vckA
S
vckQjvckQi. In the subspace spanned by

the two lowest energy states, at exactly Q ¼ 0, the
exchange matrix elements are also diagonal. At Q ¼ 0,
the exchange term is the diagonal constant

C≡ hS0jKxjS00i¼ δSS02πe2
X
G≠0

X
vckv0c0k0

AS�
vck0A

S0
v0c0k00

×
huckjeiG·rjuvkiðhuc0k0 jeiG·rjuv0k0 iÞ�

jGj ;

ð4Þ
where for small Q’s in 2D, vðQþGÞ ¼ ½2πe2=ðjQþ
GjÞ� ≈ ð2πe2=jGjÞ. This constant term is 20 meV in our
ab initio calculation. It is purely a local-field effect and is
responsible for the splitting between the like-spin (bright)
and unlike-spin (dark) states at Q ¼ 0.
We now derive an effective Hamiltonian (HBSE) to

describe the main physics for the 1s complex in a basis
of “excitonic" functions from the individual valleys in the
tight-binding limit, given in Eq. (5) below. At Q ¼ 0, both
the like- and unlike-spin excitonic levels are doubly
degenerate, with the amplitude AS

vck0 of one state (jSK0 i)
confined to the K valley and that of the other (jSK0

0 i)
confined to the K0 valley. NearQ ¼ 0, it is sufficient to use
the following basis functions (which are of the Bloch form
of excitons from a specific valley in the tight-binding limit)
to expand the true exciton state jSQi:
jSKQi≈ jeiQ·RSK0 i≡

�
1

0

�
Q

; jSK0
Q i≈ jeiQ·RSK

0
0 i≡

�
0

1

�
Q

;

ð5Þ
where R ¼ ½ðre þ rhÞ=2�, ð 10 ÞQ and ð 0

1
ÞQ are pseudospi-

nors denoting, respectively, basis functions on K and K0

valleys, and jeiQ·RSK0 i ¼
P

vckA
S
vck0jvckQi.

In this basis, HBSE is a 2 × 2 matrix and the intravalley
exchange term (matrix element between basis functions in
the same valley) is

hSKQjKxjSKQi ¼
X

vckv0c0k0
ASK�
vck0A

SK
v0c0k00hvckQjKxjv0c0k0Qi:

ð6Þ
Using a Q · p expansion of the QP states in the M matrix
elements [Eq. (2)] to second order in Q · p, the intravalley
exchange term [Eq. (6)] becomes

hSKQjKxjSKQi ¼ hSK0
Q jKxjSK0

Q i
¼

X
vckv0c0k0

ASK�
vck0A

SK
v0c0k00(Q · aðhuvkjpjuckiÞ�Q

· a0huv0k0 jpjuc0k0 ivðQÞ þ
X
G≠0

vðQþGÞ

× fcþOðQ · pÞ þO½ðQ · pÞ2�g): ð7Þ

Here, we have separated contributions from the G ¼ 0 and
G ≠ 0 Fourier components. (Higher order terms are
described explicitly in the Supplemental Material [27].)
We note that a, a0, and c are factors that depend on the
QP states but are independent of Q [35]. In Eq. (7), the
G ¼ 0-term has a nonanalytic dependence on jQj

FIG. 3 (color online). (a) Closeup of dispersion of A1s near
Q ¼ 0. Ab initio values are stars. Fit to effective Hamiltonian
[Eq. (11)] are solid lines. Red (blue) lines indicate states arising
from like-spin (unlike-spin) transitions. (b) Valley pseudospin
texture of the (upper) nonanalytic like-spin transition band around
Q ¼ 0 for states of fixed energy inQ space. (c) Valley pseudospin
texture of the (lower) parabolic like-spin transition band. (d) Optical
absorbance of linearly polarized light at fixed incidence as the
polarization vector ê is rotated over 360°. The angle of the
polarization vector, θ0, is defined with respect to the vector formed
by the intersection of the polarization plane (blue) and the xy plane.
Red (black) indicates the absorbance of states arising from the
lower (upper) like-spin band. (e) Energy difference between the
upper and lower like-spin bands that is probed as ϕ, the angle
between the wave vector of light and the z axis is changed, for light
of ℏω ≈ 2 eV. The inset shows how θ, ϕ, and θ0 are defined.
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jQ ·
X
vck

aASK
vck0huvkjpjuckij2vðQÞ ∝ AjQj: ð8Þ

Here, A is a proportionality constant, and we have made use
of the fact that for small Q in 2D, vðQÞ ≈ ð2πe2=jQjÞ, and
the fact that h0jpjSK0 i ∝ x̂þ iŷ due to the C3 symmetry [7],
which eliminates the dependence on the orientation ofQ. Up
to order Q2, the intravalley exchange [Eq. (6)] has the form

hSKQjKxjSKQi ¼ hSK0
Q jKxjSK0

Q i ¼ Cþ AjQj þ βQ2: ð9Þ
C is the splitting of bright and dark states given in Eq. (4),
and β is a proportionality constant that is a real number,
which arises from the local fields. Likewise, the intervalley
exchange may be shown to be

hSKQjKxjSK0
Q i¼ ðhSK0

Q jKxjSKQiÞ� ¼AjQje−i2θþβ0Q2; ð10Þ

where θ is the angle of Q defined with respect to the x axis
and β0 is a complex number.
After performing a similar analysis of the direct term, we

find an effective Hamiltonian

HBSEðQÞ ¼ Ω01þ A½1þ cosð2θÞσx þ sinð2θÞσy�jQj

þ
��

ℏ2

2M
þ αþ β

�
1þ jβ0j½cosð2θÞ σx

þ sinð2θÞ σy�
�
Q2; ð11Þ

whereΩ0 is the excitation energy of the exciton withQ ¼ 0,
M ¼ me þmh is the QP band mass of the free electron-
hole pair at K or K0, α is a constant from the order of the Q2

contribution from the direct term, β and β0 are constants from
the order of the Q2 contribution from the intravalley and
intervalley exchange, respectively, and σx and σy are the
Pauli matrices (see Supplemental Material for a detailed
derivation [27]). An effective Hamiltonian may be obtained
for the other exciton complexes through similar analyses.
Diagonalizing the effective Hamiltonian [Eq. (11)] gives

us two solutions: one with a parabolic dispersion

Ω−ðQÞ ¼ Ω0 þ
�
ℏ2

2M
þ αþ β − jβ0j

�
Q2; ð12Þ

and the other with a nonanalytic dispersion

ΩþðQÞ ¼ Ω0 þ 2AjQj þ
�
ℏ2

2M
þ αþ β þ jβ0j

�
Q2: ð13Þ

Hence, it is the combination of intervalley and intravalley
exchange that results in a lower band with a parabolic
dispersion [Eq. (12)] and an upper band with a nonanalytic
dependence on jQj [Eq. (13)], as seen in our ab initio
calculation [Fig. 3(a)]. We emphasize that this jQj depend-
ence at small Q is a consequence of the 2D Coulomb
interaction and the opposite angular polarization of the
electronic states in the K and K0 valleys, which removes the
dependence on the direction of Q.

We fit Eqs. (12) and (13) to our ab initio calculation
[Fig. 3(a)] to obtain the values of the proportionality con-
stants, A, α, β, and β0. From the slope of the linear branch, we
find A ¼ 0.9 eVÅ. Normally, the dominant Q2-term comes
from the QP effective mass term ℏ2Q2=2M. M for mono-
layer MoS2 is roughly 1.1m0. From the dispersion of the
unlike-spin states in which exchange interaction is zero, we
find that α ¼ −0.9 eVÅ2, and the effective mass of the
unlike-spin transition (dark) 1s exciton is roughly
M� ¼ 1.5m0. The effective mass of the parabolically dis-
persing like-spin transition (bright) 1s exciton isM� ¼ 1.4m0,
indicating that β − jβ0j, the difference between quadratic
terms in the intervalley and intravalley exchange, is small,
only about 0.2 eVÅ2, while the magnitude of β is about
4 eVÅ2. Our results demonstrate an enhancement of about
30% in the center-of-mass effective massM� of the parabolic
band excitons due to the electron-hole interaction [36].
Since the difference between the magnitude of the

quadratic terms in the intervalley and intravalley exchange,
β − jβ0j, is small, we may to good approximation neglect
this difference (i.e., we take β0 ¼ e−i2θβ; see Supplemental
Material [27]). Then, the solution for the parabolic like-spin
transition exciton band simplifies to

1ffiffiffi
2

p ðe−iθjSKQi − eiθjSK0
Q iÞ; ð14Þ

and the solution for the nonanalytic like-spin transition
exciton band simplifies to

1ffiffiffi
2

p ðe−iθjSKQi þ eiθjSK0
Q iÞ: ð15Þ

For both states, the valley pseudospin winding number
aroundQ ¼ 0 is 2. The pseudospin texture of these states in
a circle inQ space is shown in Figs. 3(b)–3(c). To study the
optical response, we project the momentum and polariza-
tion of incident linearly polarized light into the layer 2D
plane. The momentum Q of the excited exciton is equiv-
alent to the in-plane component of the wave vector of the
light. The in-plane projection of the electric field polari-
zation vector can be decomposed into components
perpendicular (transverse) to and parallel (longitudinal)
to the momentum transfer Q. We define the angle of the
polarization vector with respect to the transverse projection
as θ0. The absorbance of the upper and lower bands with
respect to θ0 has a phase difference of 90°, and the intensity
of each band peaks twice as the polarization angle is rotated
over 360° [Fig. 3(d) and Supplemental Material [27]]. The
different pseudospin texture results in the upper band
coupling to the longitudinal component of the in-plane
projection of the electric field and the lower band coupling
to the transverse component of the in-plane electric field
(see Supplemental Material [27]). Since the transverse
projection is always in the 2D plane, only the intensity
of optical absorbance from the upper band changes with the
angle of the incident light with respect to the z axis (ϕ).
Intensity is maximum at normal incidence (ϕ ¼ 0) and
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minimum at grazing incidence (ϕ ≈ 90°). The energy
difference between the upper and lower band for different
Q on the dispersion curve can also be probed by changing
ϕ. For photons with ℏω ≈ 2 eV, the largest energy differ-
ence is about 1.5 meV when the wave vector of the light is
nearly parallel to the plane.
In summary, we have computed the exciton dispersion of

MoS2 from first principles and find an unusual dispersion
with a parabolic lower band and a v-shaped upper band for
the lowest energy like-spin transition exciton complex near
Q ¼ 0. This dispersion is due to the interplay of the
intervalley and intravalley exchange, both of which have
a jQj-dependent behavior. We have derived a simple
effective Hamiltonian and analytic solutions describing this
physics and predict that the splitting of the exciton bands can
be measured with a linearly polarized optical beam tilted
away from normal incidence. We expect any 2D semi-
conductor with excitons with an amplitude concentrated in a
small portion of the Brillouin zone to exhibit similar
nonanalytic exciton dispersion near Q ¼ 0. We also show
that interaction effects increase the exciton mass M� by
> 30%. First-principles results for the intervalley excitons
with Q ¼ K and other finite-Q excitons are also obtained.
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