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The interplay between topological phases of matter and dissipative baths constitutes an emergent
research topic with links to condensed matter, photonic crystals, cold atomic gases, and quantum
information. While recent studies suggest that dissipative baths can induce topological phases in
intrinsically trivial quantum materials, the backaction of topological invariants on dissipative baths is
overlooked. By exploring this backaction for a centrosymmetric Dirac insulator coupled to phonons, we
show that the linewidths of bulk optical phonons can reveal electronic band inversions. This result is the
first known example where topological phases of an open quantum system may be detected by measuring
the bulk properties of the surrounding environment.
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Introduction.—The discovery of topological phases in
three-dimensional crystals has culminated in a new clas-
sification scheme for solids that is based on quantum
mechanics and topology [1]. These phases are described
by integers known as topological invariants, which mani-
fest themselves through robust gapless states localized at
sample boundaries. The characterization of topological
invariants in insulators often idealizes electrons as being
isolated from their environment. Yet, in real materials,
electrons are coupled to various nonelectronic baths and the
usual idealization fails when the strength of the coupling
exceeds the energy gap of the insulator.
Recent work [2,3] has suggested that baths can alter

topological invariants and even induce topological phases.
However, the inverse of this effect, concerning the back-
action of topological invariants on baths, remains com-
pletely unexplored. Does a change in the electronic
topological invariant modify the surrounding bath? Is it
possible to infer the topological invariants of an electronic
system by measuring its nonelectronic environment? The
present work intends to answer these questions affirma-
tively and thus establish an unanticipated interplay between
band topology and dissipative baths.
To that end, we adopt a minimal model that consists of

massive 3D Dirac fermions coupled to a bath of phonons.
In this model, we find that it is possible to learn whether the
electronic band topology is trivial or nontrivial by analyz-
ing the phonon linewidths in the thermodynamic limit (i.e.,
disregarding boundary effects). Our results challenge a
commonly held viewpoint, according to which the bulk
properties of a doped topological insulator and a doped
trivial insulator should be qualitatively similar.
Model.—The minimal Hamiltonian describing the low-

energy bulk bands of a time- and inversion-symmetric 3D
Dirac insulator near the Brillouin zone center is [4]

HðkÞ ¼ γk2 þ αk · στx þMkτ
z; ð1Þ

where σi and τi are Pauli matrices in spin and orbital space
(respectively), k ¼ ðkx; ky; kzÞ is the crystal momentum, γ
models the particle-hole asymmetry of the band structure, α
is the Dirac velocity, Mk ¼ mþ βk2 is the Dirac mass,
2jmj is the energy gap of the insulator at k ¼ 0, and β is an
additional band parameter. Importantly, τz is the electronic
parity operator and ½τz;Hð0Þ� ¼ 0. For narrow-gap insula-
tors described by Eq. (1), the sign of mβ determines the so-
called strong topological invariant: if β > 0, then m > 0
(m < 0) results in a trivial (topological) insulator. If
mβ < 0, the electronic bands at k ¼ 0 are said to be
inverted. In addition, Mk acts as a momentum-dependent
effective magnetic field that polarizes the orbital pseudo-
spin τ along the z direction. BecauseMk changes sign as a
function of k in the topological phase but not in the trivial
phase, the k dependence of the expectation value of τz

reflects the key difference between the bulk electronic
structures of trivial and topological insulators [cf. Figs. 1(a)
and 1(b)].
The eigenstates of Eq. (1) are jukni, where n ∈

f1;…; 4g labels the two highest valence bands and the
two lowest conduction bands near k ¼ 0. The energy
eigenvalues Ekn are doubly degenerate owing to the
combined time-reversal and inversion symmetries. For
analytical simplicity, we have chosen a continuum
model with spherical symmetry; this captures the
essential ideas and is smoothly deformable into more
realistic lattice models that we use below for numerical
calculations.
Phonon self-energy.—Electron-phonon interactions

shift phonon frequencies and contribute to the phonon
linewidth. These two effects can be calculated from the
phonon self-energy [5]
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Πλðq;ωqλÞ ¼
1

V

X

knn0

jgλnn0 ðk;qÞj2ðfkn − fk−qn0 Þ
Ekn − Ek−qn0 − ωqλ − i0þ

: ð2Þ

Here, V is the sample volume, λ labels different phonon
modes, q is the phonon momentum, ωqλ is the bare phonon
frequency, and fkn is the fermion occupation number for
the state jukni with a Fermi energy ϵF. Also,

gλnn0 ðk;qÞ ¼ huknjĝλðqÞjuk−qn0 i; ð3Þ

where ĝλðqÞ ¼ ĝλð−qÞ† is the electron-phonon vertex
operator in the low-energy electronic subspace [6,9].
In a centrosymmetric crystal, lattice vibrations are either

even or odd under spatial inversion. Each of these modes
couples to electrons and can, as we shall see, inherit
signatures of the underlying band topology. For the model
of Eq. (1) and for q≃ 0 optical phonons, inversion and
time-reversal symmetries dictate [6]

ĝevenðqÞ≃ g0ðq̂Þ þ gzðq̂Þτz;
ĝoddðqÞ≃ gxðq̂Þτx þ g0ðq̂Þ · στy; ð4Þ

where “even” (“odd”) denotes the coupling of electrons to
parity-even (parity-odd) phonon modes, with ½ĝeven; τz� ¼ 0

and fĝodd; τzg ¼ 0. Inversion symmetry guarantees that
ĝeven and ĝodd will not be mixed in a single phonon mode.
Also, q̂ ¼ q=q, and the coefficients gi (i ¼ 0; x; z) and g0i
(i ¼ x; y; z) can be obtained from the atomic displacements
in the particular phonon mode [6]. Physically, g0 and gz
lead to phonon-induced modulations of the chemical
potential and the Dirac mass, respectively. Next, we
identify ways in which ĝλ can transfer the information
about electronic band topology to the phonon sector.
Intraband phonon damping.—The main electronic

mechanism contributing to phonon linewidths is the scat-
tering of phonons off electron-hole pairs. The rate of
this process is γλðqÞ≡ −ImΠλðq;ωqλÞ. In this work, we
focus on long-wavelength optical phonons and on low
temperatures.
We begin by considering the commonly realized case in

which the phonon frequency is smaller than the band gap of
the insulator. In this case, the “insulator” must be doped in
order for carriers to absorb phonons and induce a linewidth
γλia. The subscript ia is shorthand for “intraband” and
makes it explicit that phonons decay into particle-hole pairs
in the vicinity of the Fermi surface. Assuming that the
distance from the Fermi level to the bulk band edge is large
compared to the phonon frequency, we have [6]

γλiaðq≃ 0Þ≃ πω0λDðϵFÞjgλiaðkF; q̂Þj2δðvF · q − ω0λÞ; ð5Þ

where DðϵFÞ is the electronic density of states per band at
the Fermi level, kF is the Fermi wave vector, vF is the
Fermi velocity, δðxÞ is the Dirac delta, and jgλiaðk; q̂Þj2
denotes the sum of jgλnn0 j2 over the two degenerate bands at
momentum k and energy Ek (hence the label intraband). In
addition, Ō ¼ P

kOδðEk − ϵFÞ=½VDðϵFÞ�.
Equation (5) contains information about the electronic

band topology. The simplest way to see this is to imagine a
parity-even phonon mode and a parity-odd phonon mode
that couple to electrons purely through ĝz ≡ gzτz and
ĝx ≡ gxτx, respectively. More general couplings with g0 ≠
0 and g0i ≠ 0 will be discussed below. From Eqs. (1), (3),
and (5), the linewidths of these two phonon modes are [6]

γjiaðq≃ 0Þ≃ jgjðq̂Þj2DðϵFÞjhτjiiaj2
πη

2
Θð1 − ηÞ; ð6Þ

where j ∈ fx; zg, ΘðxÞ is the Heaviside function,
η≡ ω0j=ðqvFÞ, and

jhτziiaj2 ¼ 1 − jhτxiiaj2 ¼ M2
kF
=ðα2k2F þM2

kF
Þ: ð7Þ

Note that jhτjiiaj2 ∈ ½0; 1� (cf. Fig. 1). In particular, when

MkF ¼ 0, jhτziiaj2 ¼ 0, and jhτxiiaj2 ¼ 1. Combining

Eqs. (6) and (7) with Fig. 1, it follows that γjia reflects
the orbital texture, and therefore the topology, of the bulk
bands. In order to clarify this point, we eliminate the
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FIG. 1 (color online). (a),(b) Expectation value of the electronic
parity operator hτzi (represented by arrows) as a function of
momentum for the electronic model of Eq. (1). (c),(d) Fermi
surface averages of jhτzij2 and jhτxij2 [cf. Eq. (7)], as a function
of the Fermi energy, for m ¼ −0.2 eV (c) and m ¼ 0.2 eV (d).
The rest of the band parameters are the same as those in Ref. [3].
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nontopological features coming fromDðϵFÞ by considering
the ratio γxia=γ

z
ia ≃ ðg2x=g2zÞjhτxiiaj2=jhτziiaj2.

For a fixed band gap, Eq. (6) predicts a strong maximum
for γxia=γ

z
ia as a function of ϵF in the topological phase (but

not in the trivial phase) because MkF crosses zero as a
function of ϵF in the topological phase (but not in the trivial
phase). This difference in behavior between the trivial and
topological phases is significant for a sizable jmj, but
becomes gradually weaker as the energy gap decreases,
ultimately disappearing when m → 0. In other words,
γxia=γ

z
ia contains no signatures of band topology near the

topological quantum critical point. Figure 2(a) confirms our
analytical statements in a lattice model, for which Eq. (5) is
solved numerically.
Alternatively, in a sample with fixed carrier density,

γxia=γ
z
ia shows a pronounced maximum as a function ofm in

the topological phase only. The maximum takes place at
m�≃−βk2F, whereMkF undergoes a sign change. Motivated
by recent claims of pressure-induced band inversions in
Sb2Se3 and Pb1−xSnxSe [10,12], in Fig. 2(b) we plot γxia=γ

z
ia

as a function of pressure, using a lattice model. This
corroborates the emergence of a “topology-induced” maxi-
mum in γxia=γ

z
ia.

In the preceding discussion of γxia, we have assumed a
parity-odd phonon mode that couples to electrons purely

through τx [g0i ¼ 0 in Eq. (4)]. In general, such a phonon
can also couple to electrons through the term g0 · στy.
However, we have verified that this coupling produces
qualitatively similar features as τx.
Similarly, when discussing γzia, we have imagined a

parity-even phonon mode that couples to electrons purely
through τz [g0 ¼ 0 in Eq. (4)]. Nonetheless, symmetry
allows a mixture of τz and the identity matrix 1 [13].
The latter produces intraband matrix elements that are
insensitive to the orbital texture of the insulator, since
huknj1jukni ¼ 1. Consequently, the effect of g0 ≠ 0 is to
dilute away the topological features of γzia. Although this
constitutes a problem towards the realization of Fig. 2 in
real materials, we find that the maximum in γxia=γ

z
ia remains

pinned to the topological side if jgzj > jg0j.
Interband phonon damping.—Thus far, we have con-

sidered the linewidths of phonons with ω0λ < 2jmj. Herein,
we investigate the case ω0λ > 2jmj, relevant to Dirac
insulators with particularly small band gaps and/or high-
frequency phonon modes. In this case, a phonon is
absorbed by an electron in the bulk valence band, which
gets promoted to the bulk conduction band. The associated
phonon linewidth is γλie, where the subscript ie is shorthand
for “interband.” Assuming for the moment that ϵF is inside
the bulk gap, Eq. (2) yields [6]

γλieðq≃ 0Þ≃ πDjointðω0λÞjgλieðk; q̂Þj2; ð8Þ

where DjointðωÞ ¼
P

kδðEkc − Ekv − ωÞ=V is the joint
density of states, Ekc and Ekv are the bulk conduction
(c) and valence (v) band energies. In addition, jgλiej2 ¼P

n∈c;n0∈vjgλnn0 j2 and jgλiej2 ¼
P

kjgλiej2δðEkc − Ekv −
ω0λÞ=ðVDjointÞ.
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FIG. 2 (color online). (a) γxia=γ
z
ia as a function of the Fermi

energy and the bulk carrier density, for m ¼ �0.1 eV. A
prominent maximum emerges in the topological phase only,
due to the momentum-space orbital texture of the electronic
eigenstates. (b) γxia=γ

z
ia as a function of pressure P. We use

m ¼ αðP − PcÞ, where Pc is the critical pressure for a band
inversion and α is a coefficient that can be obtained, e.g., from
experiment [10]. The bulk carrier density is n≃ n0ð1þ P=BÞ,
where n0 is the density at P ¼ 0 and B is the bulk modulus. The
maximum of γxia=γ

z
ia appears at P ¼ P�. Inset: the dependence of

P� on n0. As n0 decreases, P� approaches Pc, making it more
difficult to identify trivial and topological phases solely from
phonon measurements. Throughout this figure, we have used a
tetragonal lattice regularization of Eq. (1). Because α, β, γ are not
tabulated for Sb2Se3, we have replaced them with those of Sb2Te3
[4]. For the bulk modulus, we have used B ¼ 30 GPa [11].
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FIG. 3. γxie=γ
z
ie as a function of the Dirac massm, where the rest

of the band parameters correspond to Sb2Te3 (a) or Bi2Se3 (b).
The minimum of γxie=γ

z
ie occurring in the topological side is a

direct manifestation of the orbital texture in Fig. 1. Throughout
this figure, we have used a tetragonal lattice regularization of
Eq. (1) with the band parameters taken from Ref. [4]. The Fermi
level is assumed to be inside the bulk gap.
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From Eqs. (1) and (3), we obtain jgzieðk; 0Þj2 ¼
jgxiaðk; 0Þj2 and jgxieðk; 0Þj2 ¼ jgziaðk; 0Þj2. Therefore, γλie
is as sensitive as γλia to the band topology of the Dirac
insulator (with x and z interchanged). More so, an impor-
tant advantage of γλie over γ

λ
ia is that we may effectively take

ĝeven ¼ ĝz regardless of the value of g0 in Eq. (4), because
huknj1jukn0 i ¼ 0 for interband transitions. Accordingly, the
topological signatures in γλie are more robust than those
in γλia.
In a sample with fixed carrier density, γxie=γ

z
ie contains a

minimum as a function of m at m� ≃ −ω2
0β=ð4α2Þ, i.e.,

only in the topological phase [14]. This result has the same
origin as the maximum of γxia=γ

z
ia discussed above, and it

holds for doped samples as well so long as αkF=ω0 ≪ 1.
Figure 3 confirms this for a lattice model.
Discussion.—In sum, there are three reasons why the

linewidths of bulk, long-wavelength optical phonons can
inherit distinct signatures of the electronic band topology.
First, phonon linewidths are proportional to the square of
energy-resolved electron-phonon matrix elements. Second,
in a centrosymmetric crystal, the coupling of an optical
q≃ 0 phonon to electrons either commutes or anticom-
mutes with the electronic parity operator. Third, the
momentum-space texture of electronic parity eigenvalues
reflects band inversions.
To be precise, the predicted features in the phonon

linewidths probe band inversions near the Fermi level,
rather than the strong topological invariant per se.
However, in materials whose low-energy bands are
described by Eq. (1), the energy gap minimum occurs at
a single time-reversal-invariant momentum (TRIM) and
hence a band inversion taking place therein is equivalent to
a change in the strong topological invariant. By extension,
phonon linewidths can probe the strong topological
invariant in centrosymmetric crystals where the direct band
gap minimum is known to occur at an odd number of
symmetry-equivalent TRIMs. In contrast, phonon line-
widths do not faithfully reflect the strong topological
invariant in materials where the direct band gap minimum
can occur at an even number of symmetry-equivalent
TRIMs, or in materials lacking an inversion center.
Phonon frequencies, which we have barely mentioned

thus far, are much less sensitive than phonon linewidths
to the electronic band topology. This is because the real part
of Eq. (2) contains a sum over electron-phonon matrix
elements at multiple energies, with weights that depend on
nontopological details of the energy bands. This notwith-
standing, a recent experiment [10] in Sb2Se3 has attributed
a kink in the pressure dependence of the phonon frequency
to a band inversion. Our calculations [6] do not support
such an interpretation.
The main tools to measure q≃ 0 phonon linewidths are

Raman spectroscopy (for parity-even phonons), infrared
spectroscopy (for parity-odd phonons), and inelastic neu-
tron scattering [15]. In a clean material with ω0λτ ≫ 1

(where τ is the disorder scattering time), γλia vanishes unless
q > ω0λ=vF [16]. Since ω0λ=vF typically exceeds the
photon wave vector used in optical spectroscopies, γλia
should be measured with neutrons. In contrast, γλie remains
nonzero at q ¼ 0 and is thus amenable to optics. For
Bi2Se3, we estimate γλie;ia ≲ 1 cm−1, which nears the
experimental resolution [17].
Aside from electron-phonon interactions, anharmonic

lattice effects contribute to the phonon linewidth. To
leading order, phonon-phonon interactions contain no
information about the electronic band topology and are
independent of the carrier density. Therefore, the anhar-
monic part can be subtracted by measuring the linewidths
with respect to a baseline carrier density.
In view of our results, it is natural to ask whether any

other physical observable involving Fermi’s “golden rule,”
such as conductivity, might be sensitive to electronic band
topology on the same footing as the phonon linewidths. The
answer is generally negative. For example, the optical
conductivity cannot clearly differentiate between trivial and
nontrivial orbital textures in the bulk because the velocity
operator mixes 1, τx, and τz [18].
To conclude, we have proven that it is in principle

possible to infer the strong topological invariant of multiple
Dirac insulators from the linewidths of bulk, long-wave-
length optical phonons. It may be of interest to investigate
formal links between the phonon linewidth and the SU(2)
Berry phase identified in Ref. [19]. Likewise, it will be
desirable to complement our theory with ab initio elec-
tronic structure calculations, and to search for similar
insights in other contexts (cold atoms, photonic crystals,
quantum memories) where the interplay between topology
and dissipation may be crucial.
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