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We extend the applicability range of fermionic path integral Monte Carlo simulations to heavier elements and
lower temperatures by introducing various localized nodal surfaces. Hartree-Fock nodes yield the most accurate
prediction for pressure and internal energy, which we combine with the results from density functional
molecular dynamics simulations to obtain a consistent equation of state for hot, dense silicon under plasma
conditions and in the regime of warm dense matter (2.3—-18.6 gcm™, 5.0x 10° — 1.3 x 108 K). The shock
Hugoniot curve is derived and the structure of the fluid is characterized with various pair correlation functions.
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The development of a first-principles methodology for
warm dense matter (WDM) applications that treats temper-
ature effects consistently is a key component of the steward-
ship of plasma science [1,2]. Indeed, technological progress
in high energy density physics (HEDP) applications, such as
fusion energy [3,4], shock-wave physics [5], astrophysical
processes [6-8], and planetary [9,10] and stellar [11] inte-
riors, relies on simulations for input and guidance. WDM is
broadly described as the HEDP regime between condensed
matter and ideal plasmas, where strong electron correlation
and quantum and ionization effects are all important.

For the low-temperature part of the WDM regime,
density functional theory molecular dynamics (DFT-MD)
[12] is an accurate and efficient first-principles simulation
method. The thermal occupation of electronic states is
treated as a perturbation of the ground state by Fermi-Dirac
smearing [13]. The main drawback of this method is that it
becomes computationally infeasible as electrons occupy
more bands with increasing temperature. Some alternative
DFT-MD-based methods, such as orbital-free DFT [14,15]
and average-atom models [16], have made progress on
overcoming the thermal-occupation deficiency, but efforts
to improve accuracy are still underway [17,18].

Here, we focus on the development of the path integral
Monte Carlo (PIMC) method [19], which naturally incorpo-
rates finite-temperature quantum effects by working within
the many-body thermal density matrix formalism. The
combination with Monte Carlo sampling makes this
approach one of the most appropriate first-principles simu-
lation techniques for quantum systems at finite temperature
(T). Since the length of the path scales as 1/7, the method
becomes increasingly efficient for high temperatures.
Electrons and nuclei are often treated equally as paths, but
here we treat the nuclei classically because their zero-point
motion is negligible for the temperatures under consideration.

PIMC simulations with more than two electrons in a
dense system suffer from a fermion sign problem; we solve
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this by introducing the fixed-node approximation [20,21]
that restricts paths so that they remain in the positive
regions of a trial density matrix, pr(R,R,;7) > 0. The
restricted path integral reads

the_S[R’]» (1)

R—PR/, p;>0

pr(RR) =05 (1)

P

where the action S weights every path and P denotes
permutations of identical particles. The most common
approximation to the trial density matrix is a Slater
determinant of single-particle density matrices,

pr(R.R"B) = [l (ri, r B (2)

in combination with the free-particle (FP) density matrix,

Py (i B) = D e BTN, (3)

k

derived from a sum over plane waves, W, (r). The latter
is usually converted into Gaussian form [20]. FP nodes
becomes exact in the limit of high temperature. Interaction
effects have been introduced to the nodal structure on the
variational level [22,23].

In previous work [24-29], we have shown that FP nodes
can be sufficient to bridge the WDM regime for elements
as heavy as neon. FP nodes work for first-row elements
because they can still describe the occupation of the 1s
state, and DFT-MD works well for lower temperatures
where the second shell becomes occupied. In order to
simulate second-row elements with PIMC calculations, one
must go beyond the FP nodal approximation and incor-
porate the effects of bound states, as we describe below in
an application to silicon.

We chose to study silicon since it is a natural extension of
our original work on carbon and is a prototype material
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with relevance in the semiconductor industry [30], geo-
physics and planetary science [10], and astrophysics
[11,31-35]. Silicon has a rich solid phase diagram, dis-
playing 11 solid-state phases under pressure and becoming
metallic near 12 GPa [36-38]. A number of dynamic shock
compression experiments have been performed [39-45].
Shock-compressed silicon has been studied theoretically
with several classical [46—49] and one DFT-MD simulation
[50] that investigated pressures up to 500 GPa and temper-
atures up to 10* K. Dynamical properties of shocked
silicon plasma states have also been studied extensively
by theoretical approaches [51-55].

We perform standard DFT-MD simulations using the
VASP code [56]. Supercells with 8 atoms were used for
T >2.5 x 10° K, where the kinetic energy far outweighs
the interaction energy, and cells with 24 atoms were used at
lower temperatures [29]. Additional details are provided in
the Supplemental Material [57]. For the PIMC calculations,
we have used our own code, cupID [61]. The Coulomb
interaction is introduced through pair density matrices
[62-64]. The nodes are enforced at intervals of
1/8192 Hartrees (Ha), which means we need between 4
and 2560 time slices for simulations in the temperature
range of 129 — 1 x 10° K. It is sufficient to evaluate the
pair action only at intervals of 1/1024 Ha [23].

We began our investigation of localized nodal approx-
imations in PIMC calculations with the relatively simple,
proof-of-concept problem of computing internal energy
and pressure of a stationary silicon atom (one nucleus and
14 electrons) in a periodic cell over a wide temperature
range. In Fig. 1, we compared energies from DFT and
PIMC calculations using FP nodes, where we found a
discrepancy of 5.2 Ha at 2 x 10° K that increased to
12.6 Ha at 5x 10° K. We attributed this discrepancy
primarily to the FP nodal approximation, which, as we
have shown, works well only as long as the second shell is
not significantly occupied [27].

We investigated two approaches to improve upon the FP
nodal approximation. First, we added the bound eigenstates
of the Coulomb potential of the silicon nuclei, ¥ (r — R;),
to the nodal approximation in Eq. (3),

N n

P B =" e B (r=R)V; (¥ =R)), (4)
I=1 s=0
where the number of states n needs to be at least 7 in each
spin channel in order to provide at least one bound state for
every electron. We used the efficient formulation of the
Coulomb density matrix put forth in Ref. [62] and, hence,
we refer to these nodes as Pollock nodes. The 1s state
(n =1) has been added to PIMC nodes once before
to simulate dense hydrogen [65]; agreement with DFT
predictions and experimental results was, however, not as
good as expected because additional approximations were
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FIG. 1 (color online). Internal energy and pressure vs temper-
ature for a single silicon atom in periodic cell of 5.0 Bohr.

introduced when the nodes were enforced. Here we enforce
the nodes strictly as outlined in Refs. [20,21].

The adoption of Pollock nodes reduced the energy
deviation between DFT and PIMC calculations from
12.6 to 2.7 Ha at 5x 10° K. However, the pressure
deviations increased from 11% to 31% (Fig. 1). We tried
to improve this result by varying the number of bound
states in Eq. (4), testing different time steps, studying
various numbers of electrons, and, finally, by developing a
multideterminantal nodal surface in the spirit of quantum
chemistry. In the multideterminantal approach, we adopted
a sum of FP fermion determinants where each is added to a
different bound shell with the appropriate e #F: weight.
However, this approach did not lead to a significant
improvement in the predicted pressure. This discrepancy
led us to abandon the Pollock node approximation. We
concluded that the eigenstates of noninteracting particles in
the Coulomb potential are too confining for interacting
electrons.

In our second approach, we constructed a thermal
density matrix from Hartree-Fock (HF) orbitals that we
computed with the GAMESS code [66] and expanded in a
localized basis set (6-31 + +G). We again used Eq. (4),
but this time the functions ¥, (r) become the HF orbitals,
which are weighted by factors e#F: where E; is set to the
corresponding HF eigenvalue. Our approach differs from
ground state HF nodes [67]. With our HF nodal approxi-
mation, we found perfect agreement with the DFT pre-
diction for the internal energy of the silicon atom over the
entire temperature range under consideration (Fig. 1). The
resulting PIMC energies are consistently lower than those
obtained with the other two nodal approximations, which,
as illustrated in the Supplemental Material [57], implies a
lower free energy [23] and establishes HF nodes as the most
accurate nodes among the three approximations considered
here. The PIMC pressures derived with HF nodes agree
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within the 16 error bars for all temperatures of 7 x 10° K
and higher. For 5 x 10° K, a small pressure discrepancy
remained, but, given the large improvement over FP and
Pollock nodes, we decided to adopt HF nodes for the many-
particle simulations with moving nuclei that we discuss for
the remainder of this Letter.

The evaluation of HF orbitals for many moving particles
adds a non-negligible burden to the computation of the
nodes. We vectorized this part of the calculation by
evaluating the orbitals for many positions at once. We
updated the inverse of the determinants whenever possible
rather than recomputing it. Nevertheless, when one ion is
moved, all determinants need to be reevaluated; this is not
the case for FP nodes, which are independent of the ion
positions. Despite this additional cost, we were able to
perform PIMC simulations with 8 nuclei and 112 electrons
for temperatures of 1 x 10° K and above.

We needed to introduce one more methodological
development. Upon introducing HF nodes into our simu-
lations with moving nuclei, the acceptance ratio of the ion
moves rapidly decayed to zero at lower and intermediate
temperatures as electron paths began to sample the bound
states at the nuclei. Because the nodal surfaces now depend
on the nuclear positions, node crossings are almost
unavoidable when an ion is moved. The crossing is almost
exclusively triggered by nearby electrons. The decay in
efficiency was so detrimental that we could not have
obtained the smooth g(r) functions in Fig. 2 without the
development of multiparticle moves that relocate one
nucleus and nearby electrons at once. We needed to design
an algorithm that satisfied the detailed balance requirement
[19] and did not rely on any permanent pairing of electrons
and ions. We introduced a localization function,

L= / Lt (1) - Ry, (5)

that assigns a probability of finding electron paths, r;(7),
near ion /. Adopting concepts from the permutation
sampling in Ref. [19], we multiply these probabilities to
construct a table that contains all moves of one ion with up
to four electron paths, including those that permute.
Because L;; is a very localized function, the number of
significant entries is fairly small; the table can thus be
constructed efficiently. Once a particular move has been
selected from the table, we shift the entire group to a
new location within a box of 0.5 Bohr without otherwise
changing their paths. This leaves the function Lj;
unchanged within the group, which means that the detailed
balance can be satisfied by adopting a particularly simple
expression for the acceptance ratio: the sum of the table
entries for the new location divided by that for the original
coordinates. This procedure leads to very efficient ion moves.
To change the internal coordinates of electron paths, we
continue to rely on the single- and multielectron moves [19].
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FIG. 2 (color online). The top two panels compare the nuclear
pair correlation functions from PIMC calculations and DFT-MD
at various temperatures. The middle panel shows the integrated
nucleus-electron pair correlation function, N(r), computed with
PIMC calculations. Results are compared with an isolated ion
in order to estimate the ionization state of the plasma. The two
lowest panels display the electron-electron pair correlation
functions for pairs with parallel and opposite spins. All results
are for fourfold compression.

Figure 3 and Supplemental Table S1 [57] summarize our
equation-of-state calculations. For the density interval of
onefold to eightfold the ambient density of 2.329 gcm™,
PIMC simulations with HF nodes were performed for a
temperature range of 129 —2 x 10% K and DFT-MD simu-
lations for 2 — 0.05 x 10° K. At 2 x 10° K, both methods
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FIG. 3 (color online). Pressure-density conditions of our PIMC
and DFT-MD simulations. The blue line shows the shock
Hugoniot curve.

yield consistent thermodynamic and structural properties
despite the fact that both techniques involve very different
concepts and approximations. The predicted internal energies
deviate by up to 5 Ha/atom and the pressure by up to 4%. A
difference of 5 Ha/atom would be equivalent to a 2.5%
difference in the ionization fraction of the second shell. We
attribute these deviations to a combined effect of three
approximations: the ground state DFT exchange-correlation
functional, the frozen-core DFT pseudopotential, and our
localized nodes in PIMC calculations. While it is difficult to
disentangle the errors due to these approximations, we
anticipate that the discrepancies will be further reduced when
both methods are improved in the future. Figure 4 illustrates
that the deviations between PIMC calculations and DFT-MD
are small compared to the error in the Debye model. We only
plotted excess quantities relative to a fully ionized plasma
model because the total internal energy varies by over
10000 Ha/atom in the parameter range of consideration.
Good agreement between PIMC calculations and DFT-
MD is found for the nuclear pair correlation shown in
Fig. 2. With PIMC calculations, we were also able to derive
the integrated nucleus-electron pair correlation function,
N(r), that measures how many electron reside on average
within a radius » from a nucleus. Comparing the informa-
tion at small r with results for isolated ions, we can estimate
the degree of ionization in the plasma. For temperatures of
1,2, and 4 x 10° K, we estimate the average charge of the
silicon ions to be +6, +8, and 410 respectively. At higher
temperature, the 1s states becomes partially ionized as well.
The electron-electron pair correlation functions in
Fig. 2 yield strong positive correlations, which underlines
the fact that multiple electrons are bound to one nucleus.
As the temperature is increased, the positive correlation
diminishes and, eventually, even the negative correlations
between electrons with parallel spins at small r are reduced.

| IR I IR
10° 10° 10’ 10°
Temperature (K)

FIG. 4 (color online). Internal energy and pressure for a silicon
plasma at a density of 9.316 gcm™ are shown vs temperature.
We plot the excess quantities relative to a fully ionized non-
interacting plasma.

Finally, we derive the principal shock Hugoniot curve
[68]. Under shock compression, a material changes from
an initial state with internal energy, pressure, and volume
(Ey = —289.166 Ha/atom, Py =1 bar, V, from p,=
2.329 gem™3) to a final state denoted by (E,P,V) that
we can predict theoretically. The shock compression ratio,
p/po, is controlled by interaction effects and by excitations
of internal degrees of freedom. In Fig. 3, a maximum
compression ratio of 4.99 is reached for 1.6 x 10° K where
approximately 7 of 14 electrons have been ionized. A
second compression maximum of 4.95 is predicted to occur
at 8.3 x 10° K, which is caused by the ionization of the 1s
state. As we have seen for neon [29], the temperature is too
high for this maximum to be studied with DFT-MD.
Therefore, a combined PIMC and DFT-MD approach is
needed to study all features of the principal Hugoniot curve.

By constructing a thermal density matrix with HF
orbitals for the purpose of computing fermion nodes, we
were able to perform PIMC simulations with heavier
elements than previously possible. Through the optimized
evaluation of such nodes and the adoption of multiparticle
Monte Carlo moves, we were able to put together an
efficient algorithm and derive the equation of state of
silicon plasmas. At lower temperatures, we add results from
standard DFT-MD simulations. By combining both tech-
niques, we provide a first-principles treatment for all
second-row elements in the regime of warm dense matter
and for plasma conditions.
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