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We develop a method for calculating the electron-phonon vertex in polar semiconductors and insulators
from first principles. The present formalism generalizes the Fröhlich vertex to the case of anisotropic
materials and multiple phonon branches, and can be used either as a postprocessing correction to standard
electron-phonon calculations, or in conjunction with ab initio interpolation based on maximally localized
Wannier functions. We demonstrate this formalism by investigating the electron-phonon interactions in
anatase TiO2, and show that the polar vertex significantly reduces the electron lifetimes and enhances the
anisotropy of the coupling. The present work enables ab initio calculations of carrier mobilities, lifetimes,
mass enhancement, and pairing in polar materials.
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The electron-phonon interaction (EPI) is a cornerstone of
condensed matter physics, and plays important roles in a
diverse array of phenomena. Recent years have witnessed a
surge of interest in ab initio calculations of EPIs, leading to
new techniques and many innovative applications in the
case of metals and nonpolar semiconductors [1–12]. In
contrast to this fast-paced progress, in the case of polar
semiconductors and insulators the study of EPIs from first
principles has not gone very far, owing to the prohibitive
computational costs of EPI calculations for polar materials
[13,14]. For example, a fully ab initio calculation of the
carrier mobility of a polar semiconductor has not been
performed yet, while such calculations have recently been
reported for nonpolar semiconductors such as silicon [15]
and graphene [16]. Given the fast-growing technological
importance of polar semiconductors, from light-emitting
devices to transparent electronics, solar cells, and photo-
catalysts [17–19], developing accurate and efficient compu-
tational methods for studying EPIs in these systems is of
primary importance.
At variance with metals and nonpolar semiconductors,

in polar materials two or more atoms in the unit cell
carry nonzero Born effective charge tensors [20]. As a
consequence, the fluctuations of the ionic positions
corresponding to longitudinal optical (LO) phonons at
long wavelength generate macroscopic electric fields
which can couple strongly to electrons and holes, leading
to the so-called Fröhlich interaction [21]. Up to now this
interaction has not been taken into account in ab initio
calculations of EPIs; the two key obstacles towards a
description of Fröhlich coupling from first principles are
(i) the Fröhlich coupling was designed to describe simple
isotropic systems with one LO phonon, and (ii) the
electron-phonon vertex diverges for q → 0, where q is
the phonon wave vector. The first obstacle relates to the
fundamental question on how to define the Fröhlich
coupling in the most general way. The second obstacle

renders first-principles calculations extremely demanding,
since a correct description of the singularity requires a
very fine sampling of the Brillouin zone.
In this work we address the challenges (i) and (ii) above

by developing a general formalism for first-principles
calculations of the Fröhlich vertex. Our strategy consists
in separating the short-range and the long-range contribu-
tions to the electron-phonon matrix elements, and identifying
the Fröhlich coupling with the long-range component. We
translate our formalism into a powerful computational
scheme, whereby the short-range component is calculated
using state-of-the-artWannier-Fourier electron-phonon inter-
polation [22], and the singular coupling is calculated using
the Born effective charges and the high-frequency dielectric
permittivity tensor. As a first demonstration of this approach
we calculate carrier lifetimes in anatase TiO2.
The Fröhlich model [21] describes the interaction of an

electron in a parabolic band with a dispersionless LO
phonon of frequency ωLO. The electron is in an isotropic
dielectric medium with static and high-frequency permit-
tivities ϵ0 and ϵ∞, respectively. In this model the electron-
phonon coupling matrix element takes the form

gq ¼ i
jqj

�
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where q is the phonon wave vector, Ω the unit cell volume,
N the number of unit cells in the Born–von Kármán
supercell, and e, ε0, and ℏ are the electron charge, vacuum
permittivity, and reduced Planck constant, respectively.
Equation (1) shows that the Fröhlich coupling gq diverges
at long wavelengths, q → 0. This singularity poses a
challenge to ab initio calculations of EPIs in polar materials.
In general, the vertex describing electron-one phonon

interactions can be expressed via the coupling matrix
element gmnνðk;qÞ ¼ hψmkþqjΔqνVjψnki. This quantity
has the meaning of probability amplitude for the scattering
between the initial electronic state jψnki and the final state
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jψmkþqi via the perturbation ΔqνV due to a phonon with
crystal momentum q, branch ν, and frequency ωqν. The
matrix elements gmnνðk;qÞ can be calculated starting from
density functional perturbation theory [23], and have been
employed to investigate many properties involving EPIs,
for example, the electron velocity renormalization [24]
and lifetimes [25,26], phonon softening [3] and lifetimes
[27,28], phonon-assisted absorption [29,30], critical tem-
perature in conventional superconductors [10,31,32], and
resistivity [15,16]. The key ingredient of all these calcu-
lations is the evaluation of gmnνðk;qÞ on extremely dense
Brillouin zone grids, which is computationally prohibitive.
This difficulty has been overcome with the development of
an ab initio interpolation strategy for the electron-phonon
vertex [22,33] based on maximally localized Wannier
functions [34]. The approach of Ref. [22] relies on the
spatial localization of the scattering potential and of the
electron wave functions when expressed in a real-space
Wannier representation.
While the method of Ref. [22] was successfully

applied to metals and nonpolar semiconductors
[1,6,12,16,25,30,35,36], the same strategy breaks down in
the case of polar materials. In fact, the singularity in Eq. (1)
implies that the scattering potential is long-ranged in real
space; hence, the Fröhlich vertex is not amenable to
Wannier-Fourier interpolation. By the same token, less
refined linear interpolation strategies are equally inadequate.
In order to deal with the polar singularity we separate the

short- (S) and long-range (L) contributions to the matrix
element:

gmnνðk;qÞ ¼ gSmnνðk;qÞ þ gLmnνðk;qÞ: ð2Þ

If all contributions leading to the long-wavelength diver-
gence are collected inside gL, then the short-range compo-
nent will be regular and amenable to Wannier-Fourier
interpolation. This strategy is analogous to the calculation
of LO-TO splittings in polar materials by separating the
analytical and nonanalytical parts of the dynamical
matrix [37].
We now derive an expression for gL starting from the

following ansatz: the macroscopic electric field generated by
the nuclei and experienced by the electrons can be obtained
by associating an electric point dipole p ¼ eZ� · u to each
atom,whereZ� ¼ Z�

αβ is the Born effective charge tensor and
u ¼ uα is the displacement from equilibrium [here and in the
following Greek indices indicate Cartesian coordinates, and
we use the notations ðB · cÞα ¼

P
β Bαβcβ, a · B · c ¼P

αβ aαBαβcβ]. This notion draws from the very definition
of Born charges as the sources of the macroscopic polariza-
tion [20]. Our ansatz amounts to following similar steps as in
the original work of Fröhlich [21], although we are replacing
ionic point charges by Born effective charge tensors. A more
formal theory of polar electron-phonon coupling can be
developed by starting from a many-body approach [38],

and using the analytical properties of the dielectric matrix
[39]. Since in polar insulators the atomic oscillations around
equilibrium take place over time scales that are much longer
than the electronic response time, we can assume following
Fröhlich [21] that the electrostatic potential generated by the
dipole p is screened by the high-frequency (electronic)
permittivity. This choice corresponds to assuming the adia-
batic approximation. In the most general case of an aniso-
tropic solid this will be given by the tensor ϵ∞ ¼ ϵ∞;αβ. By
solving the anisotropic Poisson’s equation with the dipole p
placed at the origin of the reference frame we find,

VLðrÞ ¼ i
4π

NΩ
e

4πε0
p ·

X
q

X
G≠−q

ðqþGÞeiðqþGÞ·r

ðqþGÞ · ϵ∞ · ðqþGÞ ;

ð3Þ
where G indicates a reciprocal lattice vector, and the wave
vectors q belong to a regular grid ofN points in the Brillouin
zone. This result is derived in the SupplementalMaterial [40].
Now we consider that one contribution in the form of
Eq. (3) arises from each atom κ in the position τκR ¼
τκ þR, where R denotes a lattice vector. For a given
phonon with wave vector q belonging to the branch ν the
atomic displacement pattern is given by ΔτðqνÞκR ¼
ðℏ=2NMκωqνÞð1=2Þeiq·ReκνðqÞ. In this expression eκνðqÞ
represents a vibrational eigenmode normalized within the
unit cell. If we make the replacement p → eZ�

κΔτ
ðqνÞ
κR inside

Eq. (3), we obtain our main result for the matrix element gL:

gLmnνðk;qÞ ¼ i
4π

Ω
e2

4πε0

X
κ

�
ℏ

2NMκωqν

�ð1=2Þ

×
X
G≠−q

ðqþGÞ · Z�
κ · eκνðqÞ

ðqþGÞ · ϵ∞ · ðqþGÞ
× hψmkþqjeiðqþGÞ·rjψnki; ð4Þ

where the angular brackets are to be evaluated within the
Born–vonKármán supercell. Details about this derivation are
provided in theSupplementalMaterial [40]. Ifwe consider the
more restrictive situation of an isotropic dielectric, we find
that Eq. (4) reduces correctly to the Fröhlich vertex in Eq. (1).
This result can be obtained by using the relation between the
Born charges and the static and high-frequency permittivities
[42], and by invoking the Lyddane-Sachs-Teller relations
[43]. Since gL reduces to the Fröhlich limit under the
assumptions used in the original work [21], Eq. (4) represents
the generalization of the Fröhlich vertex for ab initio calcu-
lations. We note that any choice of the polar electron-phonon
coupling which did not have exactly the same limit as Eq. (4)
for q → 0 would yield a phonon self-energy and hence
phonon frequencies without the correct LO-TO splitting. In
fact, in the long wavelength limit our ansatz leads precisely to
the electron-phonon vertex of Ref. [38]. The advantage of our
formulation is that the physics behind the polar singularity
becomes transparent. One interesting property of our polar
vertex in Eq. (4) over Eq. (1) is that it naturally takes into
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account the periodicity of the lattice, which is not the case for
the original Fröhlich vertex. Furthermore, we do not need to
make any assumptions on which LO mode should be
considered, since our formalism incorporates seamlessly
the coupling to all modes, and the coupling strength is
automatically suppressed whenever Z�

κ · eκνðqÞ is transverse
to qþG.
Taken together, Eqs. (2) and (4) provide a practical

recipe for calculating EPIs in polar materials. In the
simplest approach one could perform calculations involv-
ing only the polar coupling gL, in order to determine the
magnitude of these effects. In this case the phase factors
hψmkþqjeiðqþGÞ·rjψnki can safely be replaced by their
qþG → 0 limit, δmn, and the ensuing calculations of
gL become trivial postprocessing operations. An example
of this calculation is shown in Fig. S2 in the Supplemental
Material [40]. A more refined strategy consists of comput-
ing the complete matrix elements g ¼ gL þ gS by exploit-
ing Wannier-Fourier interpolation. In this case we need to
perform the following steps: (i) evaluate the complete
matrix elements g on coarse Brillouin zone grids; (ii) sub-
tract gL so as to obtain the short-ranged part of the matrix
element, gS; (iii) apply Wannier-Fourier electron-phonon
interpolation to the short-range matrix element, following
Ref. [22]; (iv) add up the short-range part and the long-
range part at arbitrary k and q points after interpolation.
This strategy enables the calculation of millions of
electron-phonon matrix elements for polar materials with
ab initio accuracy, and at the computational cost of a
standard calculation of phonon dispersions. In order to
correctly capture the electronic phases we stress that this
procedure requires the interpolation of the overlaps in
Eq. (4). This is achieved by using the rotation matrices
Unmk appearing in the definition of maximally localized
Wannier functions [34]: jwmRi ¼

P
nke

−ik·RUnmkjψnki.
Using this definition and by considering small qþG we
obtain the result:

hψmkþqjeiðqþGÞ·rjψnki ¼ ½UkþqU
†
k�mn: ð5Þ

The matrices Uk are known at every point of the coarse
grid from the calculation of maximally localized Wannier
functions, and can be obtained at all other points via the
interpolation of the electron Hamiltonian [44].
In order to demonstrate our approach we consider the

electron-phonon coupling in a prototypical polar semi-
conductor, anatase TiO2. Very recently Fröhlich physics
has been studied in this material by means of angle-
resolved photoelectron spectroscopy [45]. Figure 1(a)
shows the phonon dispersion relations of anatase TiO2

calculated using Quantum ESPRESSO [46,47]. The polar
coupling is manifest in the LO-TO splitting which can
be seen around the Γ point for the infrared-active Eu and
A2u modes (the LO modes are highlighted by arrows in the
plot). In Fig. 1(b) we compare representative electron-
phonon matrix elements calculated from DFPT with the
result of our polar Wannier-Fourier interpolation, along
high-symmetry lines in the Brillouin zone. Our interpolated
matrix elements were obtained by performing explicit
DFPT calculations on a coarse 4 × 4 × 4Γ-centered
Brillouin zone grid. It is apparent that our method perfectly
reproduces the polar singularities at Γ, and the behavior of
the matrix element anywhere in the Brillouin zone. For
comparison in the same figure we also show the short-range
part of the matrix element jgSj (red line) which is clearly
non-singular near Γ. We stress that a standard interpolation
strategy without taking into account the polar coupling
completely fails in reproducing the correct behavior (see
Fig. S1 in the Supplemental Material [40]). In order to
quantify the importance of the polar divergence, in Fig. 1(c)
we consider the quantity 4πq2jgj2 (q ¼ jqj). This quantity
is ubiquitous in electron-phonon calculations since most
physical properties involve Brillouin zone integrations
containing jgmnνðk;qÞj2dq [49]. The short-range compo-
nent (red) severely underestimates the complete coupling

FIG. 1 (color online). (a) Calculated phonon dispersions in anatase TiO2 along high-symmetry lines in the Brillouin zone. The LO
phonons discussed in the main text are highlighted by arrows. (b) Calculated electron-phonon matrix elements, with (blue solid lines)
and without (red dashed lines) the polar coupling gL from Eq. (4). The calculations using Wannier-Fourier interpolations (lines) are
compared to direct DFPT calculations at each wave vector (filled discs). Here we show the gauge-invariant trace of jgj2 over degenerate
states. In the calculation of gmnνðk;qÞ we set the initial electronic state jψnki to the bottom of the conduction band at Γ, the final
electronic state jψmkþqi to the bottom of the conduction band, and the phonon branch to be the highest (LO) optical mode. (c) The
spherical average of the electron-phonon matrix elements, 4πq2jgj2, with (blue) and without (red) the polar coupling, and using the
simple Fröhlich model in Eq. (1) (gray).
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strength, even after the singularity has been lifted by the
volume element prefactor 4πq2. Similarly, when using the
Fröhlich model in Eq. (1), the coupling is significantly
overestimated (gray). This demonstrates that the incorpo-
ration of the long-range coupling using Eq. (2) and (4) is
essential for ab initio calculations of EPIs in polar materials.
For completeness Figs. S3 and S4 in the Supplemental
Material show that similar conclusions apply to two other
prototypical polar compounds, GaN and LiF [40].
As a first example of application of our method we

calculate the lifetimes of conduction electrons in anatase
TiO2 arising from the EPI. We determine the lifetimes τnk
from the imaginary part of the Migdal electron self-energy
Σnk [Fig. 2(a)], using τnk ¼ ℏ=2ImΣnk [50]. We consider
electrons in the conduction band along the ΓZ and the ΓX
high-symmetry lines, with energies near the band bottom
[Fig. 2(d)]; we evaluate the self-energy using 512 000
inequivalent phonon wave vectors (80 × 80 × 80 random
grid), a broadening of 10 meV, and a temperature of 20 K.
The linewidths [Fig. 2(b) and 2(d)] are negligible below
90 meV: this energy corresponds to the threshold for the
emission of the high-frequency A2u LO phonon at Γ. We
can also resolve a weaker coupling with a threshold of
40 meV, associated with a Eu LO phonon. Therefore, for
electronic states close to the bottom of the conduction band
we find that the coupling is dominated by the A2u and Eu
LO modes around 100 meV (at 20 K), in agreement with
the experimental findings of Ref. [45]. We note that in this
case electron-electron interactions do not contribute to the
linewidths (within the G0W0 approximation) since the
electron energy is below the energy thresholds for elec-
tron-hole pair generation (the fundamental gap) and for
plasmon emission. Turning to the lifetimes, we see in
Figs. 2(c) and 2(f) that these are essentially infinite below
the phonon emission threshold, but they are reduced to
∼3–9 fs for more energetic electrons. Interestingly, the

lifetimes are highly anisotropic, varying by a factor of 3
going from Z to X. This is related to the anisotropy of the
band structure, and to the fact that the coupling is strongest
for small phonon wave vectors [40]. For comparison, we
also show in Fig. 2 calculations performed with the
standard Wannier interpolation technique [33], which fails
to correctly reproduce the matrix elements. The lifetimes
are incorrectly enhanced by up to an order of magnitude; at
the same time the anisotropy is mostly washed out [red
curves in Fig. 2(c) and 2(f)]. This comparison demonstrates
the importance of the polar singularity in the correct
calculation of electron lifetimes in TiO2. We expect to
find similar effects in related properties, such as polaron
binding energy and carrier mobilities.
In conclusion, we introduced a method for studying

electron-phonon interactions in polar semiconductors and
insulators. Our method generalizes the Fröhlich theory via
a consistent description of short-range and long-range
contributions to the coupling strength. The present formal-
ism can be employed either for complementing first-
principles calculations at no extra cost, or for performing
efficient and accurate ab initio calculations using Wannier-
Fourier interpolation. We expect that our approach will
enable the calculation of many properties beyond the reach
of current methods, including temperature dependent
mobilities in polar semiconductors, dynamics of photo-
excited carriers, and superconductivity in doped oxides.

This work was supported by the Leverhulme Trust
(Grant No. RL-2012-001) and the UK Engineering and
Physical Sciences Research Council (Grant No. EP/
J009857/1). This work used the ARCHER UK National
Supercomputing Service via the AMSEC Leadership
project, and the Advanced Research Computing facility
of the University of Oxford.
Note added.—Recently a related study of polar electron-
phonon couplings was reported [51].

FIG. 2 (color online). (a) Diagram of the Migdal self-energy Σ used to calculate electron lifetimes. The straight and wiggly lines
represent the electron and phonon Green’s functions, respectively. The circles are the electron-phonon matrix elements. (d) Close-up of
the conduction bands of anatase TiO2 near the band bottom at Γ, taken as the zero of the energy. (b), (e) Electron linewidths arising from
electron-phonon scattering, ImΣ, along the ΓZ and the ΓX lines, respectively, near the band bottom. The energies of the LO phonons
shown in Fig. 1(a) are indicated by vertical dashed lines. (c),(f) Electron lifetimes from (b) and (e). In (b),(e) and (c),(f) the blue solid
lines are computed using the complete vertex, while the red dashed lines are obtained using standard Wannier interpolation [33].
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