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We theoretically investigate elastic waves propagating in metamaterials with simultaneous zero indices
for both the longitudinal and transverse waves. With scattering objects (here cylinders) present in the
metamaterial slabs, while the elastic waves can mostly transmit through the metamaterial slabs perfectly,
exhibiting the well-known cloaking effect of zero-index metamaterials, they nevertheless become totally
blocked at resonances, indicating strong elastic wave scattering by the objects in the cases. However,
despite the occurrence of the elastic wave scattering, there is, counterintuitively, no mode conversion
between the longitudinal and transverse waves in the process, completely in contrast to that in conventional
elastic media. A design of a two-dimensional phononic crystal with these peculiar properties is presented.
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In the past decade, zero-index metamaterials (ZIMs) have
become an attractive research focus. This is the category of
metamaterials whose permittivity and permeability are
simultaneously or individually near zero. As a consequence
of the zero refractive index, the phase velocity of a wave in a
ZIM can approach infinity; thus, the phase of a wave
throughout the whole ZIM is essentially constant. This
unique property leads to many intriguing phenomena and
applications, such as tailoring the phase pattern of a radiation
field [1–3], tunneling of EM energy through ultrathin
channels or bends [4,5], and manipulating EM wave
propagation through ZIM waveguides by tailoring the
parameters of the dielectric defects [6,7]. Meanwhile, the
concept of metamaterials has been extended to acoustic and
elastic media. Much effort has been focused on the negative
index of refraction [8–12], subwavelength imaging [13,14],
and transformation acoustics [15–21]. Recently, acoustic
ZIMs have also drawn intense attention, and various
schemes have been proposed to realize them, such as
acoustic waveguides loaded with membranes and/or a
Helmholtz resonator [22–24], coiling up space with curled
channels [25,26], and a two-dimensional (2D) acoustic
crystal with Dirac-like cone dispersion [27–30]. However,
because of the complexity of the scattering of elastic waves
in a solid structure, limited works were devoted to elastic
ZIMs [31,32].
As is well known, when an elastic wave of either

longitudinal (P) or transverse (S) type is incident on an
elastic discontinuity, it undergoes scattering, and the
scattered waves of both types are generally produced, a
process known as “mode conversion” [33]. Therefore, in
dealing with the 2D scattering problems of in-plane elastic
waves, one needs to consider the coupled P and S waves
even if in the elastic metamaterials [15,16]. However, here

we show that, in an elastic metamaterial possessing near
zero reciprocal of shear modulus 1=μ, near zero mass
density ρ, and ordinary bulk modulus κ at a certain
frequency, wave scattering vanishes mostly for embedded
objects, and, even if scattering occurs at resonances, mode
conversion does not happen, so that the wave natures of
both the P waves and S waves always remain intact. Note
that, when μ diverges, although κ has a finite value, ðμþ κÞ
also diverges and 1=ðμþ κÞ also tends to zero for a Pwave.
Consequently, this kind of metamaterial has simultaneous
zero indices for both the P wave and S wave, which is
termed a double zero-index metamaterial (DZIM) hereafter.
In the meantime, because the DZIM having its material
parameters ρ, 1=μ, and 1=ðμþ κÞ simultaneously goes
through zero at the same frequency point, and thus all of
them can be expanded in a Taylor series ofΔω (reference to
this zero point), the first-order term of Δω will take the
lead, since generally the parameters of a metamaterial can
be described with a (generalized) Drude model and the
first-order terms in expansions do not vanish. Taking the
leading term only in the expansions in approximation,
substituting them into the dispersion relations k ¼ ω

ffiffiffiffiffiffiffiffi
ρ=μ

p
(for the S waves) and k ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=ðμþ κÞp

(for the P wave),
and considering ω constant around the zero point will
immediately lead to two linear dispersion relations for the S
and P waves, which form a double Dirac cone with the
Dirac point just locating at the zero point. Therefore, in
addition to the double zero indices, generally the DZIMs
have also a double Dirac cone. As the analog of the ZIMs
for electromagnetic waves and for acoustic waves, naturally
one expects that the DZIM can serve as a cloak for elastic
waves, if its impedance matches with the surrounding
medium. However, it is interesting to note that, for a
DZIM slab with embedded objects (e.g., cylinders), strong
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scattering occurs at resonances, resulting in a total reflec-
tion of the incident wave by the slab. Although scattering
does occur, there is no mode conversion in the process. A
simple analytic model is proposed to capture the physics of
this anomalous phenomenon. In addition, we propose a
2D phononic crystal (PC) which can be mapped to an
isotropic elastic material with effective zero 1=μeff and
zero ρeff . Numerical simulations show that the PC
system can be a good candidate to achieve the DZIM
structure experimentally for its simple manufacturing
requirements and no demand of any anisotropic material
parameters.
The geometry of the 2D structure under consideration is

illustrated in Fig. 1(a). It consists of four distinct regions:
The left and right regions are background medium (with
mass density ρ0 bulk modulus κ0, and shear modulus μ0)
and are separated by the elastic DZIM slab with effective
mass density ρ1, bulk modulus κ1, and shear modulus μ1.
And a cylindrical solid object with radius rd, mass
density ρd, bulk modulus κd, and shear modulus μd is
embedded in the DZIM slab. The periodic boundary
condition is applied to the upper and lower boundaries
in the simulation. Because of possessing double near zero
parameters for both the P wave and S wave, the DZIM
displays double Dirac cone dispersion at a certain finite
frequency.
We first investigate the propagation characteristics of the

DZIM slab without inclusion. The basic field equations for
the in-plane elastic waves in an isotropic solid can be
written as [33]

ρ
∂vx
∂t ¼ ∂τxx

∂x þ ∂τyx
∂y ; ρ

∂vy
∂t ¼ ∂τxy

∂x þ ∂τyy
∂y ; ð1Þ

∂τxx
∂t ¼ ðκ þ μÞ ∂vx∂x þ ðκ − μÞ ∂vy∂y ;

∂τyy
∂t ¼ ðκ − μÞ ∂vx∂x þ ðκ þ μÞ ∂vy∂y ;

∂τxy
∂t ¼ μ

�∂vx
∂x þ ∂vy

∂y
�
; ð2Þ

where viði¼x;yÞ represents the velocity field, which is the
derivative of the displacement field μiði¼x;yÞ with respect
to time, and τijði;j¼x;yÞ represents the stress tensor.
Equations (1) and (2) represent Newton’s law and the
generalized Hook law, respectively. For plane waves
propagating in a homogeneous elastic medium along the
x direction, Eqs. (1) and (2) can be simplified to

ρ
∂vy
∂t ¼ ∂τxy

∂x ;
∂τxy
∂t ¼ μ

∂vy
∂x ð3Þ

for the S wave and

ρ
∂vx
∂t ¼ ∂τxx

∂x ;
∂τxx
∂t ¼ ðκ þ μÞ ∂vx∂x ð4Þ

for the P wave, respectively. In the DZIM region, as 1=μ1
tends to zero, the velocity field vy in Eq. (3) must be
constant to keep τxy as a finite value. Since the displace-
ment field is the integral of the velocity field with respect to
time, uy is also constant in the DZIM region for S wave
incidence, while for P wave incidence, as 1=ðμ1 þ κ1Þ
tends to zero too, the velocity field vx (and thus displace-
ment field ux) in Eq. (4) must be constant to keep τxx as a
finite value. Numerical simulations are carried out by
using the finite element method to verify the analysis. In
the simulation, the background medium is Si with ρ0 ¼
2.53 × 103 kg=m3, c0;1 ¼ 6.72 × 103 m=s, and c0;t ¼
4.123 × 103 m=s, and we have set ρ1 ¼ 0.0001ρ0,
1=μ1 ¼ 0.0001ð1=μ0Þ, and κ1 ¼ κ0. The frequency of the
incident wave is f0 ¼ 863 Hz. Figures 1(b) and 1(c) show
the displacement field distributions of the S wave and P
wave transmitting through the DZIM slab, respectively.
The displacement fields u1y and u1x in the DZIM region are
uniform indeed. Next, we consider the problem of intro-
ducing solid inclusion into the DZIM slab. Figures 1(d) and
1(e) show the numerically simulated displacement field
distributions of the S wave and P wave transmitting through
the DZIM slab embedded with steel cylinders (rd ¼ 2.8 m),
respectively. Compared to Figs. 1(b) and 1(c), the displace-
ment field distributions outside the cylinders are the
same. So, even though inclusions have been introduced,
the displacement fields u1y and u1x in the DZIM region are
still uniform, and there is no scattering and no mode
conversion occurring for both types of incident waves.

FIG. 1 (color online). (a) Schematic of the unit cell of our
periodic system along the y direction; the unit cell consists of the
background medium, the elastic DZIM, and an embedded
cylinder. The inset shows schematically the double Dirac cone
dispersion of the elastic DZIM with the slopes exaggerated for
visibility. The numerically simulated displacement field distri-
butions of the incident waves transmitting through the DZIM slab
without inclusion [(b),(c)], with steel inclusions [(d),(e)], and the
incident waves totally blocked [(f),(g)]. The arrows denote the
directions of the displacement. Different columns represent
the incident S and P waves, respectively. The simulation domain
is terminated in the propagation direction with perfectly matched
layers (PML), and the periodic boundary condition is assumed on
the upper and lower boundary.
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This phenomenon can be explained by utilizing the con-
stitutive relation of an isotropic elastic solid under which
condition μ1 diverges in the DZIM region. In general, if there
are elastic discontinuities, one needs to consider the com-
plete equation of the generalized Hook law [Eq. (2)] instead
of Eqs. (3) and (4). Since both vy and vx appear in Eq. (2),
the P wave and S wave are coupled. However, in the DZIM
region, after both sides are divided by μ1 and under the
condition μ1 diverge, Eq. (2) can be simplified to

0 ¼ ∂v1x
∂x − ∂v1y

∂y ;

0 ¼ −∂v1x
∂x þ ∂v1y

∂y ;

0 ¼ ∂v1x
∂x þ ∂v1y

∂y : ð5Þ

Both solutions v1y ¼ const, v1x ¼ 0 (for a purely S
wave) and v1x ¼ const, v1y ¼ 0 (for a purely P wave)
can satisfy Eq. (5). Thus, a purely S wave or a purely P
wave can still propagate in the DZIM region even though
elastic discontinuities have been introduced. However,
when the embedded cylinders’ size is increased to have
radius rd ¼ 2.06 m, contrary to our expectation, the inci-
dent waves are totally blocked by the DZIM slab, as shown
in Figs. 1(f) and 1(g). Such anomalous total blocking is
completely counterintuitive, considering that the wave-
lengths in the DZIM approach infinity and its impedance
matches with that of the background medium. In what
follows, a simple analytic model [34] is proposed to capture
the essence of the physics. Let us consider using the case of
an incident P wave as an example; the derivation for an
incident S wave is similar. Suppose a plane harmonic P
wave uincx ¼ uxeiðk0x−ωtÞ is incident from the left into the
unit cell presented in Fig. 1(a), where ux is the amplitude of
the incident field, k0 is the wave vector in background
medium, and ω is the angular frequency. We omit the time
variation item in the rest of this Letter for convenience.
Thus, the displacement field in the left background region
can be written as

u0x ¼ ux½eik0x þ Re−ik0x�; ð6Þ

while in the right background region the displacement field
must have the form

u1x ¼ uxTeik0ðx−dÞ; ð7Þ

where R and T are the reflection and transmission coef-
ficients, respectively. In the DZIM region, the displacement
field maintains a quasistatic situation (u1x ¼ const regard-
less of whether there are objects). Then using the continu-
ous boundary condition at x ¼ d, we have uxT ¼ u1x, and
thus T ¼ u1x=ux. Obviously, T ¼ 0 (total blocking) occurs
if u1x ¼ 0, which means that the displacement field

disappears anywhere in the DZIM region. In fact, it can
be seen from Fig. 1(g) that the displacement field u1x inside
the DZIM region disappears indeed. And then a natural
question to be asked is how to obtain u1x ¼ 0. In the solid
cylinders, the displacement field ud is described by the
elastic wave equation

ðλdþ 2μdÞ∇ð∇ ·udÞ−μd∇×∇×udþ ρdω
2ud ¼ 0; ð8Þ

where λd represents the Lame constant satisfying κd ¼
λd þ μd. The mirror symmetry about the x axis indicates
that the displacement field in the solid cylinder may be
expressed in terms of potential functions as

ud ¼ ∇Φþ∇ × ðẑΨÞ: ð9Þ
The solutions for Φ and Ψ may be written, respectively, as

Φ ¼
X∞
n¼0

An1JnðkdlrÞ cosðnθÞ; ð10Þ

Ψ ¼
X∞
n¼0

An2JnðkdtrÞ sinðnθÞ; ð11Þ

where kdl ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρd=ðκd þ μdÞ

p
, kdt ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρd=μd

p
, and JnðxÞ

is the nth-order Bessel function. The displacement con-
tinuity at the cylinder boundary requires that in the radial
direction

udrjr¼rd ¼ u1x cos θ; ð12Þ

and in the tangential direction

udθjr¼rd ¼ −u1x sin θ; ð13Þ

which means that, in Eqs. (10) and (11), we have to keep
only the terms with n ¼ 1 to produce the necessary θ
dependence. This leads to a set of linear equations

E11A11 þ E12A12 ¼ rdu1x;

E11A11 þ E12A12 ¼ rdu1x; ð14Þ

where Eij are defined as E11 ¼ kdlrdJ0ðkdlrdÞ − J1ðkdlrdÞ,
E12 ¼ J1ðkdlrdÞ, E21 ¼ J1ðkdlrdÞ, and E22 ¼ kdtrdJ0
ðkdtrdÞ − J1ðkdtrdÞ. Solving Eq. (14), we obtain

u1x ¼
E11E22 − E12E21

ðE22 − E12Þrd
A11 ¼

E11E22 − E12E21

ðE11 − E21Þrd
A12: ð15Þ

From Eq. (15), we can see that if E11E22 − E12E21 ¼ 0,
then u1x ¼ 0 and thus T ¼ 0, in which case the total
blocking happens. For an incident S wave, after a similar
processing, we find that the same condition (E11E22 −
E12E21 ¼ 0) needs to be satisfied to obtain T ¼ 0. It
is worth noting that the condition is unrelated to the
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structure period h, which is reasonable for the displacement
field in the DZIM region disappears when the total block-
ing occurs, and thus the multiple scattering among the
cylinders does not need to be considered. As an example,
steel cylinders are considered here. Figures 2(a) and 2(b)
show the values of expression E11E22 − E12E21 and the
numerically calculated transmission coefficients as a func-
tion of the radius rd of the cylinder, respectively. It can be
seen that each time the expression E11E22 − E12E21 equals
zero, the transmission coefficients of both incident S and P
waves equal zero indeed. It should be noted that here both
theP and Swaves are controlled by the same factor because
of the high symmetry of the cylindrical object (the
resonances induced by the vertical vibration of the P wave
and by the horizontal vibration of the S wave are equiv-
alent). If we use an object with lower symmetry, to replace
the cylindrical object here, the P and S waves can be
controlled by different factors, and independent control of
P waves and S waves can be realized. The independent
control of P and S waves by rectangular objects, which
shows good performance, is presented in Supplemental
Material [35]. It can also be seen in Fig. 2(b) that, even
when we double the structure period h, total blocking still
occurs at the same radii of the cylinder. As a result, we may
expect that even a single cylinder can be used to achieve the
total blocking of a large DZIM region.
Figure 3, as an example, shows a switchable device that

can block the incident waves or tailor the radiation phase
pattern. The device has rectangular geometry and is made
of the DZIM and a single embedded inclusion. In Figs. 3(a)
and 3(b), a steel cylinder with radius rd ¼ 2.06 m (satisfy-
ing the total blocking condition) is embedded into the
DZIM rectangle, and either an S wave or P wave incident
Gaussian beam from the bottom is totally reflected. While

Figs. 3(c) and 3(d) show that if the radius of the cylinder is
changed to rd ¼ 2.8 m dissatisfying the total blocking
condition, the incident wave may be transformed into
radiation waves with a desired shape. For S wave incidence
[Fig. 3(c)], the rectangle as a whole vibrates in the
horizontal direction, since the displacement field is uniform
in the DZIM region, and therefore the radiation wave is
plane Pwave in the horizontal direction while it is plane S
wave in the vertical direction. For P wave incidence
[Fig. 3(d)], the rectangle as a whole vibrates in the vertical
direction, and therefore the types of radiation waves
exchange in the two directions.
Finally, we investigate the experimental feasibility of the

theoretical proposal. A 2D PC is designed to have double
Dirac cone dispersion at the zone center, and the details of
the PC are presented in Supplemental Material [35].
We note that the energy associated with displacement

fields of the eigenstates mainly localizes in the rubber
cylinders (the wave velocity of rubber is lower than that
of Si) and the frequency of the double Dirac point is fairly
low [35]. So, there is a possibility that we can employ an
effective medium theory to describe the physics of the PC

FIG. 2 (color online). The values of expression E11E22 −
E12E21 (a) and the numerically calculated transmission coeffi-
cients (b) as a function of the radius rd of the cylinder,
respectively. In (b), the solid and square lines represent the
systems with different structure periods h ¼ 30 m and h ¼ 60 m,
respectively.

FIG. 3 (color online). Different columns represent the incident
S and P waves, respectively. The numerically simulated
displacement field distributions for the switchable device real-
izing total blocking [(a),(b)] and radiation phase pattern tailoring
[(c),(d)]. The radii of the cylinders are rd ¼ 2.06 m and
rd ¼ 2.8 m, respectively. All sides of the simulation domain
are surrounded by PML.

FIG. 4 (color online). The effective mass density ρeff, bulk
modulus κeff , reciprocal of shear modulus 1=μeff , and 1=ðμeff þ
κeffÞ as a function of frequency near the double Dirac point
frequency. All the effective elastic parameters have been normal-
ized to the elastic parameters of Si. The quantity ct;Si is the velocity
of transverse waves of Si. The lattice constant is denoted by a.
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system. As the dispersions near the zone center are
isotropic, the PC system can be described by three
independent effective elastic parameters: the effective mass
density ρeff, bulk modulus κeff , and shear modulus μeff
which can be obtained by using the standard effective
medium theory [37]. The results are plotted in Fig. 4, in
which the red dashed-dotted, black dashed, blue solid,
and cyan dotted lines represent ρeff , κeff , 1=μeff , and
1=ðμeff þ κeffÞ as a function of frequency, respectively.
Figure 4 clearly shows that ρeff , 1=μeff , and 1=ðμeff þ κeffÞ
intersect at zero at the double Dirac point [ω ¼
0.209ð2πct;Si=aÞ]. For the eigenmode as a combination
of quadrupolar and dipolar states only [35], κeff does not
exhibit resonant behaviors in the frequency region consid-
ered [37]. As ρeff , 1=μeff , and 1=ðμeff þ κeffÞ go through
zero simultaneously and linearly, the effective refractive
index for both the P wave and S wave also goes through
zero, but the group velocity remains finite.
Figure 5 shows the results of numerical simulations

which demonstrate the unusual wave propagation proper-
ties of the PC system. In Figs. 5(a) and 5(b), respectively,
the displacement field distributions show that the incident
S and P waves are able to pass through the PC system
and still preserve their plane-wave characteristic when the
embedded steel cylinder has a radius of rd ¼ 1.1a. In
Figs. 5(c) and 5(d), the displacement field distributions of
the PC system show the total reflection for the incident
S and P waves when the steel cylinder has a radius of
rd ¼ 2.06a, satisfying the condition E11E22 − E12E21 ¼ 0.
Compared to a previous scheme to manipulate elastic
waves [15–18,31], our PC system can achieve manipula-
tion for in-plane S waves and P waves independently and
simultaneously.
In conclusion, we show that, in the DZIM, there is no

occurrence of mode conversion for a P wave or S wave
incident on embedded objects, no matter whether there is
wave scattering by the objects. A DZIM slab can be used
either as a cloak of elastic waves for the embedded object
when it is off resonance or as a blocker of elastic waves
when the embedded object is on resonance. A simple
analytic model is presented to exhibit the essence of the

physics uniformly. A 2D PC is suggested to achieve the
intriguing phenomena. Our results provide a new under-
standing of the scattering of elastic waves by elastic
discontinuities and enable a novel way of controlling the
propagation of elastic waves.
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