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We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations
resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark
contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo
action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity,
resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the
“shear-current” effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent
plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the
generation of large-scale magnetic fields across a wide range of astrophysical objects.
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Astrophysical magnetic fields are observed to be well
correlated over length and time scales far exceeding that of
the underlying fluid motions. Beautiful in its regularity, the
22-year solar cycle is the most well-known example of this
behavior [1]. Such large-scale structure is puzzling given that
strong magnetic fields are expected to emerge through the
stretching and twisting of field lines by smaller scale
turbulence. As the primary theoretical framework to study
such behavior, mean-field dynamo theory examines how
large-scale magnetic fields develop due to these small-scale
turbulent motions. This splitting between scales is captured
by the mean-field average; the average of a fluctuating
quantity vanishes by definition (b = 0), while the average
of a large-scale field is itself (B = B). An average of the
induction equation, which governs evolution of the magnetic
field within magnetohydrodynamics (MHD), leads to [2]

6,B:Vx(UxB)+Vx£+éVZB, (1)

m

where Re,, is the magnetic Reynolds number, a dimension-
less measure of the plasma resistivity, and U and B are the
large-scale velocity and magnetic field. The electromotive
force, £ =u x b, is an average of the fluctuating fields
(u and b) and responsible for dynamo action. In the early
phases of a dynamo, the mean fields can be considered a
small perturbation to the underlying turbulence. Combined
with an assumption of scale separation between small-scale
and mean fields, this allows a Taylor expansion [3,4] of £ in
terms of B,

E=aB+pVB+ -, (2)

where a, f are the tensorial transport coefficients, calculated
from the small-scale fields [5]. Since these depend on the
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large-scale fields, a solution to Eq. (1) requires knowledge
of how & changes with B (and possibly U), essentially a
statistical closure for inhomogenous MHD.

Historically, much work has focused on kinematic
dynamo theory, in which u is uninfluenced by the magnetic
field [2,3]. Kinematic theory predicts large-scale dynamo
instability when the fluid motions possess helicity,
Ju-V xudx #0. However, the applicability of such
predictions has been called into question by a number of
authors [6,7]. In particular, above modest Reynolds num-
bers in both helical and nonhelical flows, the small-scale
dynamo [8] causes b to grow and saturate much more
rapidly [9] than B. This violates the kinematic assumption,
both because u is altered before B grows significantly, and
because a dynamically important b exists independently of
B. The buildup of small-scale fields is the origin of “a
quenching,” in which the mean field saturates well before
reaching amplitudes consistent with observation [10-13]
due to the adverse influence of b.

In this Letter we show that in turbulence with large-scale
velocity shear, it is possible and realizable to have the
small-scale dynamo enhance the growth of the large-scale
dynamo. We demonstrate this both with statistical simu-
lation [14], in which the effect is very clear but applies
rigorously only at low Reynolds numbers, and through
calculation of transport coefficients from direct numerical
simulations (DNSs). In addition, the existence of the effect
has been confirmed analytically using the second-order
correlation approximation [15], which agrees with previous
spectral 7 approximation calculations [16].

All computations presented here use the incompressible
MHD model in the shearing box, employing homogenous
Cartesian geometry and periodic boundary conditions in
the shearing frame. With a mean flow U, = —Sxy imposed
across the domain, this setup is designed to represent a
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small “patch” of turbulent fluid in large-scale velocity
shear. We force using nonhelical white-in-time noise at
small scales and study the generation of larger-scale
magnetic fields, in a way similar to previous authors
[17,18]. The mean-field average is defined as an average
over the horizontal (x and y) directions, such that the mean
magnetic fields B depend only on z. We also allow for
system rotation through a mean Coriolis force, since shear
typically arises due to differential rotation in astrophysical
objects. The rotation Q is aligned with Z (antiparallel to
V x U,), perpendicular to the flow U,,.

For the chosen horizontal average, inserting Eq. (2) into
Eq. (1) gives

0,B, = —a,,0,B, — a,,0.B, —n,,02B, + 1,,02B,
9,B, = =SB, + a,,0,B, + a,,0_B, — 1,,02B, + 11,,02B,,
(3)

using velocity shear U, but neglecting other mean veloc-
ities, and defining #,; = n;; + Re,,”!. Here @;; and n;; are
the a effect and turbulent resistivity tensors, respectively,
with the four components of 7;; relatable to the f;3
elements of the full tensor [Eq. (2)]. Because of homo-
geneity and reflectional symmetry (vanishing net helicity),
a@;; must vanish when averaged over a suitably large time or
number of realizations [3], and indeed our measurements
confirm this. There is no such constraint on 7;;, and 7,, is
very important throughout this work due to its coupling
with the shear. In particular, neglecting fluctuations in «
and assuming diagonal resistivities are equal
(1 =1y = m,), the least stable eigenmode of Eq. (3)

for a mode of vertical wave number k grows at
v = Ky (=S + K0 )] = K. (4)

Since § > 75;;, dynamo action is possible without an «a
effect if n,, <O.

Subsequent to early analytic work [19-21], it was found
kinematically that ,, > 0 (at least at low Re,,), and several
authors have thus concluded that a coherent shear dynamo
cannot explain observed field generation [18,22,23].
Instead, a popular theory is that temporal fluctuations in
a;; cause an incoherent mean-field dynamo. Importantly, in
such a dynamo, B(z, t) cannot have a constant phase in time
as it grows, since the average of B over an ensemble of
realizations vanishes, implying B must be uncorrelated
with itself after # > (k?n,)~" [24]. While incoherent dyna-
mos are possible in a variety of situations, here we argue for
a different situation—magnetic fluctuations act to substan-
tially decrease and potentially reverse the sign of 7,,,
causing the onset of a coherent large-scale dynamo that can
overwhelm the incoherent dynamo.

Our first method illustrating this effect is quasilinear
statistical simulation; see Ref. [25] for further details. The
method starts by forming equations for the fluctuating

fields # and b, and linearizing these, i.e., neglecting
fluctuation-fluctuation nonlinearities such as u - Vu and
u - Vb. One can then derive an equation for the fluctuation
statistics, C = (y;x;) (Where y = (u.b) and (- --) denotes
the average over an ensemble of realizations), as a function
of U and B [14,26,27]. Finally, using £, = C,5 — C53 and
&y = C34 — Cg, € can be fed directly into Eq. (1), resulting
in a closed system of equations. Note that the method does
not assume a scale separation between mean and fluctuat-
ing fields. Importantly, since the statistics are calculated
directly, an incoherent dynamo is not possible, and stat-
istical simulation offers a direct probe of the coherent
effect. The linearity of the fluctuation equations eliminates
the small-scale dynamo; accordingly, to excite homog-
enous kinetic and magnetic fluctuations, both u# and b are
forced at small scales (k; = 67) with the statistics of white-
in-time noise. The resulting MHD turbulent bath could be
considered as some approximation to kinetically forced
turbulence after saturation of the small-scale dynamo.

To study the magnetically driven dynamo, we keep the
total forcing level constant, successively increasing the
proportion of magnetic forcing from purely kinetic [28].
Results with shear but no rotation are illustrated in Fig. 1.
The presence of the magnetically driven dynamo is evident,
becoming slightly unstable when magnetic forcing
accounts for 0.4 of the total and increasing the growth
rate thereafter. This sustained period of exponential
growth due to magnetic fluctuations is not possible to
see in DNS, since the mean field will immediately come
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FIG. 1 (color online). Time development of the mean-field
energy, Ep = [dzB*/2, in quasilinear statistical simulation.
Small-scale fields are forced at k; = 67, Re,, = tyns/1k; =5
(here 7 is the resistivity, Pm = Re,,/Re = 1), S = 2 and the box
has dimensions (L,.L,,L,)=(1,1,4) with resolution (28,28,128).
As well as forcing the momentum equation, the induction
equation is forced to excite homogenous magnetic fluctuations,
emulating a small-scale dynamo. Total forcing is kept constant in
each simulation but the proportion of magnetic forcing (f,/f) is
increased from 0 to 0.8 [28]. As f},/f increases, the growth rate of
the mean field increases due to the change in sign and subsequent
decrease of 7,,.
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into approximate equipartition with the small-scale field
due to the finite size of the system.

The formal applicability of statistical simulation is
limited to low Re,, due to the quasilinear approximation.
Our second method utilizes DNS, forced kinetically at
small scales, to show that magnetic fields arising consis-
tently through the small-scale dynamo can drive a coherent
large-scale dynamo. To this end, we directly calculate
transport coefficients from nonlinear simulation before
and after the saturation of the small-scale dynamo. We
use the incompressible MHD code sNoopy [29], which
uses the pseudospectral method and shearing-periodic
boundary conditions. In line with our goal of showing that
the effect is possible, we choose moderate Reynolds
numbers [17], running ensembles of 100 simulations with
shear Uy = —Sxy, both with and without Keplerian rota-
tion. The moderate Reynolds numbers have the benefit of
ensuring there is no self-sustaining turbulence in the
absence of small-scale forcing (although effects may be
similar even when this occurs [30]), as well as reducing the
numerical burden of each simulation, which enables many
simulations to be run with different noise realizations
(around 400 CPU hours are required to compute each
realization). At these parameters, the prevalence of the
coherent large-scale dynamo depends on the realization
(see Fig. 2), and it appears that the coherent effect cannot
always overcome fluctuations in £ immediately after small-
scale saturation, although the dynamo develops after a
sufficiently long time [e.g., Fig. 2(d) near t = 150]. This
behavior seems generic when the coherent dynamo is close
to its threshold for excitation and we have observed similar
structures when the induction equation is driven directly
at lower Re,, [25]. Notwithstanding this variability in the
dynamo’s qualitative behavior, measurement of the trans-
port coefficients illustrates that the 7, coefficient decreases
after the magnetic fluctuations reach approximate equi-
partition with velocity fluctuations at small scales.

At low times, we use the test-field method to measure the
kinematic @ and 7, fixing the mean field and calculating &,
with no Lorentz force [3,18]. Since the small-scale dynamo
grows quickly, test fields are reset every ¢ = 5. After small-
scale saturation, standard test-field methods are inappli-
cable [31]. Instead, we extract B and £ simulation data and
calculate (a;;(t), n;;(t)) directly from Eq. (2) by computing
J dz &0 for each of © = (B,, B, d,B,,d,B,) and solving
the resulting matrix equations (in the least-squares sense) at
each time point. This method is similar to that presented in
Ref. [32]; however, we additionally impose the constraints
”yy(t) =1(1), an(f) = ayy(t)’ and ayx<t) = nxy(t) =0.
While these changes may appear to make the method less
accurate, they in fact achieve the opposite by reducing the
influence of B,. This is necessary because B, has a high
level of noise in comparison to its magnitude, and because
this noise is correlated with the noise in B, (due to B,
directly driving By) and &, (through 0,B, = —0.E, + - - ).

FIG. 2 (color online). Example spatiotemporal B, evolutions
for nonrotating [(a), (b)] and Keplerian rotating [(c), (d)]
turbulence at Re,, = up/nk; ~ 15 (ky = 67, 1 = 1/2000,
Pm = 8), § = 1, in a box of dimension (1, 4, 2) with resolution
(64, 128, 128). The first examples in each case [(a) and (c)] show
B, when a coherent dynamo develops, while the second examples
[(b) and (d)] illustrate the case when it is more incoherent. The
main factors in distinguishing these are the coherency in phase of
B, over some time period and the amplitude at saturation, which
is larger in the coherent cases. In general, the rotating simulations
are substantially more coherent. The hatched area illustrates the
region of small-scale dynamo growth. The fitting method used to
compute transport coefficients (see Fig. 3) is applied between the
dashed lines (r = 50 — 100).

These correlations are very harmful to the quality of the fit,
causing unphysical negative values for 7, [32], which also
pollute measurement of other coefficients. It is straightfor-
ward to show that the systematic errors caused by our
constraints on the transport coefficients are less than 1%
for the dynamos in Fig. 2, so long as 7, ~n,, when time
averaged. We have verified the method is accurate by
comparison with the kinematic test-field method at low
Re,,, where there is no small-scale dynamo [25,33] and the
rotation can be used to explore a range of 7,,. In addition,
the measurements are independently verified in Fig. 4 below
[34]. Because of the short time window, measurements of
the transport coefficients after small-scale saturation vary
significantly between realization, as should be expected
from Fig. 2. Nonetheless, an average over the ensemble of
100 simulations illustrates a statistically significant change
in 7, that is consistent with observed behavior.

Results are illustrated in Fig. 3. In the kinematic phase
without rotation, we see 75, = (4.1£1.6)x10™* in
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FIG. 3 (color online). Measurements of the turbulent transport
coefficients for 100 realizations of the simulations at the same
parameters as those in Fig. 2; (a) 17, and a,, coefficients (x and y
axes, respectively), no rotation, (b) 7, and a,, coefficients, no
rotation, (¢) 77,, and a,, coefficients, rotating, (d) 7, and a,,
coefficients, rotating [see Eq. (3)]. Unfilled markers in each plot
show coefficients measured from each of the individual realiza-
tions, with mean values displayed with solid markers and the
shaded regions indicating error in the mean (2 standard devia-
tions). Black markers illustrate the kinematic transport coeffi-
cients, with grey shaded regions indicating the error. After
saturation of the small-scale dynamo, we calculate a;;(f) and
1;;(t) by solving Eq. (2) approximately (see text), taking the mean
from ¢t = 50 to # = 100. This limited time window is chosen to
avoid capturing the saturation phase of the large-scale dynamo,
since #;; is presumably modified in this phase. In both methods of
computing transport coefficients, a coefficients are zero to within
error as expected, and the scatter between simulations is of a
similar magnitude to that of 7;; if one accounts for their different
units (it is necessary to divide a by a characteristic k value).

qualitative agreement with previous studies [18]. With
rotation 7, = (0.6 + 1.2) x 107, consistent with a reduc-
tion in 7, due to the Q x J effect [5]. After saturation of
the small-scale dynamo, 77,, = (—0.1 £ 1.0) x 10~ for the
nonrotating case, while n,, & —(2.0 £0.8) x 107 in the
rotating case—the same reduction in each to within error.
Values for the diagonal resistivity are smaller after satu-
ration, as expected since the velocity fluctuation energy
decreases (by a factor ~1.4). The values of (#7,,.7,,) show
that the dynamo is slightly stable on average in the
nonrotating case and marginal in the rotating case.
However, the coefficients vary significantly between real-
izations, sometimes yielding larger growth rates, and
measurements match observed growth of the mean field
for individual realizations. We illustrate this in Fig. 4,
which demonstrates consistency between the measured
transport coefficients and observed mean-field evolution

FIG. 4 (color online). Evolution of the mean-field magnitude
for a sample of the ensemble of rotating simulations (Figs. 2 and
3). Here B, the mean-field magnitude, is (|B}]* + [B}*)"/2,
where B! is the largest scale Fourier mode of B;. In each plot
the solid blue curve shows data taken from the simulation. The
dashed red curve shows the corresponding expected evolution,
using the time-dependent calculated values of the transport
coefficients, smoothed in time using a Gaussian filter of width
5. Finally, the dotted black curve illustrates the expected
evolution with all a coefficients artificially set to zero. The
similarity between this evolution and that including a (dashed
curve) illustrates that in many (but not all) cases the dynamo is
primary driven by 7,,. We list the measured mean of 7, in each
plot to show that lower values generally lead to stronger mean-
field growth, as expected for a coherent dynamo. For reference, at
the measured 7, & 0.006, the coherent dynamo is unstable below
1y = —0.00036.

by solving Eq. (3) directly [using the time-dependent 7;;(t)
and a;;(1)], for a sample of the rotating simulations. In
addition, by artificially removing a;;(¢), we illustrate that
cases with more negative 7,, are driven primarily by this,
rather than a stochastic-a effect. We thus conclude that
small-scale magnetic fluctuations act to decrease 1,,, and
that in some realizations (or after a sufficiently long
time period) a coherent large-scale dynamo develops as
a result.

To summarize, in this Letter we have demonstrated that
small-scale magnetic fluctuations, excited by small-scale
dynamo action, can drive large-scale magnetic field gen-
eration. The mechanism is a magnetic analogue of the
“shear-current” effect [16,21], arising through the off-
diagonal turbulent resistivity in the presence of large-scale
shear flow. We have demonstrated its existence numerically
using both DNS, with measurements of mean-field trans-
port coefficients before and after small-scale dynamo
saturation, and through quasilinear statistical simulation.
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More work is needed to precisely assess regimes in
which the magnetically driven dynamo might dominate, as
well as its behavior at higher Reynolds numbers where self-
sustained turbulence is possible [30]. Another interesting
question regards whether a magnetic dynamo can remain
influential in the presence of net helicity and an a effect,
particularly as a small-scale dynamo may be suppressed by
shear [35]. While such questions may be difficult to answer
definitively, the generic presence of magnetic fluctuations
in plasma turbulence gives us some confidence that the
proposed mechanism could cause large-scale dynamo
growth in the wide variety of astrophysical systems with
velocity shear.
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