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The blackbody theory is revisited in the case of thermal electromagnetic fields inside uniaxial anisotropic
media in thermal equilibrium with a heat bath. When these media are hyperbolic, we show that the spectral
energy density of these fields radically differs from that predicted by Planck’s blackbody theory and that the
maximum of the spectral energy density determined by Wien’s law is redshifted. Finally, we derive the
Stefan-Boltzmann law for hyperbolic media which becomes a quadratic function of the heat bath
temperature.
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In 1901, Planck [1] derived the famous law describing
the spectral distribution of energy of a blackbody (BB) by
introducing the concept of quantum of light, so laying the
foundation of quantum physics. In his description of the
problem, the electromagnetic field inside a cavity made
with opaque walls, which is set at a constant temperature, is
studied. In this formulation [2], the cavity is at thermal
equilibrium and acts as a heat bath. The walls of the cavity
emit and absorb electromagnetic waves so that the field
itself becomes equilibrated. The internal energy density of
the electromagnetic field in the cavity with volume V for
both principal polarization states (abbreviated by s and p)
is then given by

Us=p
BB ¼ 1

2

Z
∞

0

dω
ω2

π2c3
ℏω

eℏω=kBT − 1
¼ 1

2

π2

15

ðkBTÞ4
ðℏcÞ3 ; ð1Þ

where ℏ, kB, and c denote Planck’s constant, Boltzmann’s
constant, and the velocity of light in vacuum. Here and in
the following we neglect vacuum fluctuations.
In this work, we revisit this old problem when the cavity

is filled with a uniaxial medium [3] with a relative
permittivity tensor of the form ϵ ¼ diagðϵ⊥; ϵ⊥; ϵ∥Þ.
Here, without loss of generality, we assume that the optical
axis points into the z direction; ϵ∥ is the permittivity along
the optical axis and ϵ⊥ is the permittivity perpendicular to
the optical axis. Since we are interested in ideal black body
laws (the Planck, Wien, and Stefan-Boltzmann laws), we
neglect dispersion, dissipation, and nonlocal effects in the
following if not specified differently. Within such materials
so-called ordinary modes (OMs) and extraordinary modes
(EMs) exist and satisfy the dispersion relations [3]

k2⊥
ϵ⊥

þ k2∥
ϵ⊥

¼ ω2

c2
; ðOMÞ ð2Þ

k2⊥
ϵ∥

þ k2∥
ϵ⊥

¼ ω2

c2
; ðEMÞ ð3Þ

where k⊥ (k∥) is thewave number component perpendicular
(parallel) to the optical axis. In usual dielectric uniaxial
media the principal constants ϵ⊥ and ϵ∥ are both positive and
the isofrequency surfaces defined by relations (2) and (3) are
spheres or ellipsoids, respectively, as illustrated in Fig. 1(a).
On the other hand, when ϵ∥ < 0 and ϵ⊥>0 or ϵ∥ > 0 and
ϵ⊥<0 the isofrequency surfaces of the EM are two- or one-
sheeted hyperboloids [see Fig. 1(b)]. The first class of such a
uniaxial medium is called hyperbolic medium (HM) of type
Iwhile the second oneHMof type II [4,5]. Of course both ϵ⊥
and ϵ∥ can also be negative. In such uniaxial metalliclike
materials no propagating modes exist and the upcoming
quantities are all 0.

FIG. 1 (color online). (a) Cavity at temperature T containing an
isotropic medium of permittivity ϵ > 0 or an anisotropic (uni-
axial) medium with ϵ⊥ > 0 and ϵ∥ > 0. The particular case ϵ⊥ ¼
ϵ∥ ¼ 1 corresponds to the classical BB. (b) Cavity at temperature
T containing a HM of type I (ϵ⊥ > 0 and ϵ∥ < 0) and of type II
(ϵ⊥ < 0 and ϵ∥ > 0). The isofrequency curves are plotted inside
the cavities in the plane (k⊥; k∥).
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To start, we focus our attention on the electromagnetic
field inside a cavity filled with an arbitrary uniaxial
medium. The spectral density of states (DOS) defined as
the energy density U normalized to the mean energy of a
harmonic oscillator and associated to the thermal field can
be calculated either by counting the modes in the wave
vector space using expressions (2) and (3) or by means of
the generalized trace formula [6–8]

DðωÞ ¼ ω

c2π
ImTr½ϵGEEðr; r;ωÞ þ μGHHðr; r;ωÞ�; ð4Þ

which can be derived by using the fluctuation dissipation
theorem (FDT) [16,17] or by an eigenmode analysis as in
Ref. [7] without using the FDT. Here GEE and GHH are the
electric and magnetic Green’s dyadics for the bulk material
and μ is the relative permeability tensor. The result for a
classical BB can be retrieved by using ϵ ¼ μ ¼ 1 with the
unit dyad 1. Then the above expression reduces to the well-
known expression Dsþp

BB ðωÞ ¼ ω2=π2c3. In the following,
for the sake of clarity, we consider nonmagnetic materials
(i.e., μ ¼ 1) only. By inserting the general expression of
dyadic Green’s tensors of uniaxial materials [18,19] in the
trace formula (4) it is straightforward to derive the DOS for
the three different classes of uniaxial media. Assuming that
those media are lossless then in dielectric anisotropic media
the DOS Do

D for the OMs and De
D for the EMs are given by

the expressions (see the Supplemental Material [8])
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which where already derived by Eckhardt [20], for in-
stance. On the other hand, in the hyperbolic case we obtain
(see the Supplemental Material [8])
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and
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II ¼ 0; ð8Þ
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for the type I and type II media, respectively. We have
checked that the method of counting modes in k space
gives the same results. This is another way to obtain the
results for the LDOS without using the FDT. Note that we
have introduced a cutoff wave number k⊥;max, which for

dispersive media can be a function of the frequency and
which is determined by the real (atomic or meta) structure
of the medium. For an ideal HM k⊥;max is infinity so that the
DOS diverges as was pointed out previously [21,22].
However, for any real structure k⊥;max is a finite quantity
[23]. For hyperbolic metamaterials (HMMs) it is mainly
determined by the unit-cell size of the metastructure. Note
further that the DOS of the EMs of type I and type II HMs
coincides for k⊥;max ≫ ω

c

ffiffiffiffiffiffiffijϵ∥j
p

and is given by

De
I ≈De

II ≈
ω

π2c2

ffiffiffiffiffiffiffiffiffiffiffiffijϵ⊥ϵ∥j
p

2
k⊥;max: ð10Þ

Apparently the DOS is linear in ω and linear in k⊥;max. If
k⊥;max would be proportional to ω=c we would retrieve the
usual quadratic behavior of the DOS with respect to
frequency. We want to emphasize that the approximate
expression of the DOS for a nonideal dispersive material
given in Refs. [21,22] is proportional to k3⊥;max.
With the help of the DOS we can determine the

thermodynamic potentials of the photon gas inside the
uniaxial material. By definition, the internal and the free
energy per unit volume are given by [17]�

U
F

�
¼
Z

∞

0

dωDðωÞ
�
Uðω; TÞ
F ðω; TÞ

�
; ð11Þ

where

Uðω; TÞ ¼ ℏω

eℏω=kBT − 1
; ð12Þ

F ðω; TÞ ¼ kBTln½1 − e−ðℏω=kBTÞ�: ð13Þ

Finally, from the internal and free energy we can also
determine the entropy per unit volume by S ¼ ðU − FÞ=T.
Clearly, by means of these expressions we can derive
any thermodynamic property of the photon gas inside the
cavity as the pressure P ¼ U=3, the photonic heat capacity
CV ¼ ∂U=∂T, etc.
Let us first have a look at the expressions for the cavity

filled with an ordinary uniaxial material. In this case, we
obtain

Uo
D ¼ Us

BBϵ⊥
ffiffiffiffiffi
ϵ⊥

p
and Ue

D ¼ Up
BBϵ∥

ffiffiffiffiffi
ϵ⊥

p
: ð14Þ

Therefore, when ϵ⊥ ¼ ϵ∥ ¼ 1 we recover the classical BB
result. The relations between the internal energy, the free
energy, and the entropy have the familiar forms

Fo=e
D ¼ −

1

3
Uo=e

D and So=eD ¼ 4

3

Uo=e
D

T
: ð15Þ

Note that these relations are the same as for a usual BB
because the DOS of the field inside a dielectric uniaxial
medium is proportional to ω2.
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On the contrary, in type I and type II HMs we have
seen that the DOS of the EMs is linear in ω as in a
2D photon gas in vacuum. It follows that the relations
between the thermodynamic properties of the photon gas
are radically different in that case. Indeed, we obtain
(k⊥;max ≫

ffiffiffiffiffiffiffijϵ∥j
p

ω=c)

Ue
I=II ≈

ffiffiffiffiffiffiffiffiffiffiffiffijϵ∥ϵ⊥j
p

2
k⊥;max

2

π2c2
ζð3Þ
ℏ2

ðkBTÞ3; ð16Þ

where ζ is the zeta function. Furthermore, we find

Fe
I=II ¼ −

1

2
Ue

I=II and SeI=II ¼
3

2

Ue
I=II

T
: ð17Þ

Hence U, F, and S are proportional to T3 and not anymore
to T4. Naturally, for the OMs we find

Uo
I ¼ Uo

D and Uo
II ¼ 0: ð18Þ

Note that for the type II HMs the internal energy of the
OMs is zero, since there are no OMs in such a material. The
internal energy of the OMs in a type I HM is just the same
as in a dielectric uniaxial medium. Hence, the relations
between the thermodynamic potentials are the same as in a
dielectric uniaxial medium. However, in typical HMs the
maximal wave vector is much larger than the vacuum wave
vector k⊥;max ≫ ω=c making the material properties domi-
nated by the EMs.
Another consequence of the linearity of the DOS with

respect to ω inside a HM is the spectral shift of Wien’s
frequency ωmax (wavelength λmax) at which the energy
distribution function has its maximum. For both type I and
type II HMs we find after a straightforward calculation
from relations (9) and (11) (k⊥;max ≫

ffiffiffiffiffiffiffijϵ∥j
p

ω=c) that this
maximum is reached when

ℏωmax

kBT
¼ 1.59 or

2πlc
λmax

¼ 3.92; ð19Þ

whereas for a usual BB ℏωmax=kBT ¼ 2.82 and
2πlc=λmax ¼ 4.965. Here we have introduced the thermal
coherence length lc ≡ ℏc=kBT [6]. Hence, we see that
Wien’s frequency is shifted toward smaller values and the
maximum vacuum wavelength to larger values (see Fig. 2).
It is now interesting to compare the internal energy of the

EMs in a HM with that of a classical BB. From expressions
(1) and (16) we immediately get

Ue
I=II

Up
BB

≈
ffiffiffiffiffiffiffiffiffiffiffiffi
jϵ∥ϵ⊥j

q
ðk⊥;maxlcÞ

30

π4
ζð3Þ: ð20Þ

If Λ denotes the unit-cell size of our HM then k∥;max ¼ π=Λ
or k⊥;max ¼ π=Λ depending on the concrete structure.
For example, for a multilayer structure with layers
perpendicular to the z axis the edge of the first Brillouin

zone gives k∥;max ¼ π=Λ, whereas for a nanowire structure
with nanowires along the z axis the edge of the first
Brillouin zone gives k⊥;max ¼ π=Λ. However, independent
of the structure both maximum wave vectors are related by
k⊥;max ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵ∥=ϵ⊥j
p

k∥;max [see Eq. (3)] so that we generally
have Ue

I=II=U
p
BB ∝ lc=Λ. At a temperature of 300 K the

coherence length is lc ¼ 7.6 μm. The period of realistic
HMMs is typically larger than Λ ≈ 10 nm (see Ref. [24] for
instance). In natural HMs [23,25–27] there might be
different length scales which determine their hyperbolic
behavior. Nonetheless, we think that it is reasonable to
assume that the main length scale is again given by the unit
cell size which is in this case determined by the interatomic
spacing, i.e., Λ ≈ 1 Å. Hence, the internal energy of
thermal radiation inside a HM can be 3 (Λ ≈ 10 nm) to
5 (Λ ≈ 1 Å) orders of magnitude larger than that of a
perfect BB. The same is of course also true for the free
energy and the entropy. This result suggests that the
radiative heat flux inside a HM is dramatically enhanced
compared to that of a classical BB.
In order to evaluate the flux radiated by a cavity filled

with a HM into a HM and to derive the Stefan-Boltzmann
law, we calculate now the Poynting vector outside the
cavity in the direction of the principal optical axis by
assuming, for convenience, that the cavity opening (see
Fig. 3) is along this axis. To this end, we rely on Rytov’s
fluctuational electrodynamics. Within this theoretical
framework the thermal fluctuations on a microscopical
scale result in macroscopic fluctuating source currents j
which are the sources of fluctuational thermal electromag-
netic fields determined by

FIG. 2 (color online). Spectral energy density (in log-log scale)
of a type I and type II hyperbolic BB (red solid line) with
jϵ∥ϵ⊥j ¼ 1 and k⊥;max ¼ π=Λ with Λ ¼ 50 nm at T ¼ 300 K.
This distribution is compared with the classical BB spectrum
(blue dashed line). The solid and dashed straight lines show the
asymptotic behavior in ω and ω2 of the hyperbolic and classical
BB spectrum. The arrows indicate Wien’s frequencies in both
cases.
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Eðr;ωÞ ¼ iωμ0

Z
V
d3r0GEEðr; r0;ωÞjðr0;ωÞ; ð21Þ

Hðr;ωÞ ¼ iωμ0

Z
V
d3r0GHEðr; r0;ωÞjðr0;ωÞ: ð22Þ

Here, V is the volume of the considered structure contain-
ing the source currents which is in our case the filled cavity;
μ0 is the permeability of vacuum. Note that GHEðr; r0Þ ¼
ð1=iωμ0Þ∇ × GEEðr; r0Þ. If the filled cavity is held in local
thermal equilibrium at a given temperature T, the source
currents fulfill the FDT of the second kind [28],

hjαðr;ωÞj�βðr0;ω0Þi ¼ 4πωϵ0Uðω; TÞδðω − ω0Þ
× Im½ϵαβðωÞ�δðr − r0Þ: ð23Þ

Using these expressions we determine the ensemble
average of the Poynting vector hPi ¼ hE ×Hi (for any
dispersive and dissipative anisotropic medium) which reads
(Einstein summation convention)

hPγi ¼ ζαβγ2Re
Z

∞

0

dω
2π

2ω3μ0
c2

Uðω; TÞ

×
Z
V
dr00ðGEEðr; r00ÞImðϵÞGHE†ðr; r00ÞÞαβ: ð24Þ

Here we have introduced the Levi-Civita tensor ζαβγ and †

denoting the conjugate transpose. In order to calculate
the heat flux Φo=e ≡ hPzi, we assume that the cavity is
infinitely large so that we can replace it by a uniaxial half
space. Inserting again the Green’s dyadic [18,19] and
integrating over this half space with volume V we find
after a lengthy calculation (see the Supplemental Material
[8]) in the lossless limit, the relatively simple expression

Φo=e ¼
Z

∞

0

dω
2π

Uðω; TÞ
Z

∞

0

dk⊥
2π

k⊥
Reðko=e∥ Þ2
ðko=e∥ Þ2

ð25Þ

for the mean Poynting vector or heat flux along the surface
normal (ko∥

2 ≡ ðω2=c2Þϵ⊥ − k2⊥ and ke∥
2 ≡ ðω2=c2Þϵ⊥−

k2⊥ðϵ⊥=ϵ∥Þ). Interestingly, the integral kernel ½Reðko=e∥ Þ2=
ðko=e∥ Þ2� can be interpreted as a transmission coefficient

[29,30], which is one for all propagating modes (ko=e∥ is

purely real) inside the uniaxial medium and zero (ko=e∥ is
purely imaginary) otherwise. We have checked that the
same result can be obtained by calculating the energy flow
by using the DOS together with the group velocity so that
also this result can be obtained without using the FDT.
Hence, the maximum heat flux expressed by this equation
is obtained when each mode contributes with a maximum
transmission coefficient of one. Note, that our result is quite
different from the results obtained in Refs. [31,32].
Evaluating this expression for the mean Poynting vector

for the dielectric uniaxial material, first, we have

Φo=e
D ¼

Z
∞

0

dωUðω; TÞ ω2

π2c3
c
4

1

2

�
ϵ⊥
ϵ∥

�
: ð26Þ

Note that up to this point the derived expressions for the
mean Poynting vector are valid for dispersive materials. For
nondispersive materials this simplifies to

Φo=e
D ¼ c

4
Us=p

BB

�
ϵ⊥
ϵ∥

�
¼ Φs=p

BB

�
ϵ⊥
ϵ∥

�
: ð27Þ

When ϵ⊥ ¼ ϵ∥ ¼ 1 we find again the usual BB result, i.e.,
the Stefan-Boltzmann law. On the other hand, inside a
uniaxial material (as inside an isotropic material) with
ϵ⊥ > 1 and ϵ∥ > 1 the radiative heat flux is larger than the
BB value, which is a well-known fact [33].
In the case of HMs these results radically change. Before

seeing this, let us first consider the OMs. For Φo
I we find of

course the same relation as for the dielectric anisotropic
material, whereas as a consequence that there do not exist
any OMs in a type II HM we find Φo

II ¼ 0. On the contrary,
for the EMs we find

Φe
I ¼

Z
∞

0

dωUðω; TÞ k
2⊥;max

8π2
and Φe

II ¼ Φe
I − Φe

D:

ð28Þ

Hence, in the nondispersive case, where k⊥;max ≫ ω
c

ffiffiffiffiffiffiffijϵ∥j
p

we have

Φe
I ≈ Φe

II ≈
k2⊥;max

48ℏ
ðkBTÞ2: ð29Þ

In this case, we see that the heat flux is proportional to T2

and not anymore to T4 as in the “classical” Stefan-
Boltzmann law. Comparing this quantity with the classical
BB results, we find Φe

I=II=Φ
p
BB ≈ ðk⊥;maxlcÞ2ð5=2π2Þ.

Hence, the normalized heat flux is proportional to
ðk⊥;maxlcÞ2, which is due to the fact that the heat flux
scales like the area of the projection of the isofrequency
surface in k space [34,35], or like the number of transversal
modes [29,30], respectively. This is quite astonishing, since

z

HM

T = 0T = 0

HM

z< S  >

FIG. 3 (color online). Sketch of a hyperbolic BB emitter. The
HM inside and outside the cavity are the same.
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for HMMs with a unit cell size Λ of 10 nm and for natural
HMs with a unit-cell size Λ ≈ 1 Å we can now expect a
hyperbolic BB heat flux 6 to 10 orders of magnitude larger
than that of a usual BB at T ¼ 300 K. At cryogenic
temperatures lc becomes very large so that this ratio can
become even much larger. Note that the above limit is also
the upper limit of heat radiation between two hyperbolic
materials separated by a vacuum gap [36–40].
To summarize, we have extended the BB theory to

arbitrary uniaxial materials. For dielectric anisotropic
media we have seen that the thermodynamic properties
of the photon gas inside such media are very similar to that
of a classical BB. On the other hand, when these media are
hyperbolic, the spectral energy distribution of radiation is
shifted towards frequencies smaller than Wien’s frequency.
We have also shown that in contrast to the Stefan-
Boltzmann law, the heat flux radiated by these media
depends quadratically on their temperature. Nevertheless,
the magnitude of heat flux carried by these media can be
several orders of magnitude larger than the flux radiated by
a classical BB and may even exceed the heat flux carried by
conduction in superlattices [8]. Detailed derivations of the
above relations and the underlying assumptions as well as
more detailed discussions are given in the Supplemental
Material [8].
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