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We suggest that at least some of the strongly coupled N ¼ 2 quantum field theories in 4D can have a
nonconformal N ¼ 1 Lagrangian description flowing to them at low energies. In particular, we construct
such a description for theN ¼ 2 rank one superconformal field theory with E6 flavor symmetry, for which
a Lagrangian description was previously unavailable. We utilize this description to compute several
supersymmetric partition functions.
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Introduction.—In 4D a standard definition of a quantum
field theory (QFT) involves the specification of a Lagrangian.
Even if the theory of interest is strongly coupled, it typically
has a UV description in terms of a nonconformal Lagrangian,
which flows to it in the IR; a familiar example is QCD. This
is due to a multitude of relevant deformations admitted by a
generic Lagrangian. However, Lagrangians with a large
enough symmetry might not admit relevant deformations
explicitly preserving this symmetry. Important examples
are N ¼ 2 supersymmetric QFTs, which do not admit
any N ¼ 2 relevant superpotential deformations except
for mass terms. This has given N ¼ 2 intrinsically strongly
coupled theories a somewhat mysterious status of being non-
Lagrangian. The situation is somewhat analogous to the
pre-QCD models of strong interactions: while a lot of
understanding of the IR properties of hadrons was available,
no UV Lagrangian description was known. Once such a
description was available, it provided a much more powerful
tool for understanding the structure of the theory, even at low
energies. In this note, we discuss the possibility that the
N ¼ 2 strongly coupled superconformal QFT (SCFT) pos-
sess a nonconformal Lagrangian description with less super-
symmetry, which is enhanced to N ¼ 2 at the fixed point.
We will discuss here in detail an N ¼ 1 Lagrangian

description for the N ¼ 2 superconformal theory with E6

flavor symmetry [1], which is a paradigmatic example of an
intrinsically strongly coupled N ¼ 2 QFT. The strategy
that will work for us in this case, and which we will argue is
more general, is as follows. We will look for special points
on the conformal manifold of an N ¼ 2 theory where the
flavor symmetry commuting with an N ¼ 1 subalgebra is
enhanced. Upon gauging that symmetry with an N ¼ 1
vector multiplet, a renormalization group (RG) flow is
initiated, which generically leads to a theory with N ¼ 1
superconformal symmetry. However, we will argue that, at
least in some cases, this RG flow leads to an N ¼ 2
strongly coupled theory.
The inspiration for our construction is the structure of the

exact expression for the superconformal index of the E6

theory, which can be obtained using, a priori, formal
mathematical manipulations [2]. We will argue that these
manipulations can be given a simple physical interpreta-
tion. The Lagrangian we derive, although having certain
shortcomings, will be illustrated to be quite useful for
performing a variety of explicit computations.
Argyres-Seiberg duality.—Let us start by discussing the

basics of the Argyres-Seiberg duality [3], which is essential
for our construction. On side A of the duality we have
SUð3Þ N ¼ 2 supersymmetric QCD (SQCD) with Nf ¼ 6
fundamental hypermultiplet flavors. On side B of the
duality we have the N ¼ 2 Minahan-Nemeschansky E6

SCFT [1], with an SUð2Þg subgroup of the E6 flavor
symmetry gauged with an addition of a single hyper-
multiplet ðQB; ~QBÞ in the fundamental representation of the
gauge group. The global symmetry of side A isUð6Þ, which
we choose to decompose into SUð3Þa × SUð3Þb ×Uð1Þs×
Uð1Þy. The charges of all the fields are given in the first
part of Table I. On side B the symmetries are identified
as follows. The E6 symmetry has an SUð3Þa × SUð3Þb ×
SUð3Þc maximal subgroup. We gauge an SUð2Þg subgroup
of SUð3Þc⊇ðSUð2Þg ×Uð1ÞyÞ=Z2. The ðQB; ~QBÞ hyper-
multiplet is in fundamental representationofSUð2Þg and the
half hypermultiplets are rotated by Uð1Þs. The two descrip-
tions are conformal and have a single exactly marginal
coupling with the relation

τB ¼ 1

1 − τA
; τ ¼ θ

π
þ 8πi

g2
: ð1Þ

In particular, the strongly coupled cusp on side A, τA ¼ 1, is
mappedtozerocouplingof theSUð2ÞggaugegrouponsideB.
We also note that theN ¼ 2 supersymmetry in four dimen-
sions has SUð2ÞR ×Uð1Þr R symmetry with the hyper-
multiplets being doublets of SUð2ÞR and having no charge
underUð1Þr, and the adjoint chiral in theN ¼ 2vector being
a singlet of SUð2ÞR but having Uð1Þr charge −1.
Deformation of side B.—Let us now consider a deforma-

tion of side B of the duality. This theory has a superpotential
dictated by N ¼ 2 supersymmetry involving the term
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W ¼ QBΦB
~QB þ ΦBμ̂ ð2Þ

with ΦB being the adjoint chiral in the SUð2Þg vector
multiplet and μ̂ being the moment map operator in the E6

SCFT for SUð2Þg symmetry. We consider a deformation that
removes the first term from the superpotential. The super-
symmetry is broken to N ¼ 1. Note however that the only
symmetry broken by the deformation is the non-Abelian part
of SUð2ÞR R symmetry. All the Abelian generators are
preserved. In particular, we can define the symmetry Uð1Þt
gene rated by R3 þ r, which is a flavor, non-R symmetry,
of the deformed theory. The R symmetry of the remaining
N ¼ 1 supersymmetry can be taken to be −2r and we will
denote it as Uð1Þr̂.
An interesting fact about the deformed theory is that the

Uð1Þs symmetry rotating the half hypermultiplets enhances
to SUð2Þs. The SUð2Þ enhancement was broken in the
N ¼ 2 theory by the superpotential term we now removed.
Note that the deformation we introduce is classically
marginal and quantum mechanically has to be marginal
and/or marginally irrelevant [4], meaning that it flows back
to the conformal manifold. The only point on the conformal
manifold with Uð1Þs enhanced to SUð2Þs is the free point
for the SUð2Þg gauge theory and that would be the expected
IR fixed point of our deformation. We will soon come to
discuss the deformation on side A of the duality.
Gauging SUð2Þs and “ungauging” SUð2Þg.—We can

consider an N ¼ 1 gauging of the SUð2Þs symmetry of
the deformed theory. [Note that even at the free point
gauging SUð2Þs is not consistent with N ¼ 2 supersym-
metry.] We choose to gauge this symmetry after adding
two chiral fields in the fundamental representation of
SUð2Þs. We will denote the components with �1 charge
under the Cartan Uð1Þs as q1;2 and ~q1;2 The symmetry
rotating q1;2ð ~q1;2Þ will be denoted SUð2Þw. The SUð2Þs
N ¼ 1 gauge theory thus obtained has Nf ¼ 2 with the
four fundamental chirals given by ðq1;2; ~q1;2Þ,QB, and ~QB.

The flavor symmetry of this part of the theory is classically
SUð4Þ⊇SUð2Þg × SUð2Þw × Uð1Þt. Quantum mechani-
cally this SUð4Þ symmetry is broken to Spð4Þ [5]. The
breaking occurs because of the quantum constraint

PfM ¼ Λ4; ð3Þ

where Λ is the dynamical scale and M is the antisymmetric
matrix of the mesons and baryons built from the quarks
(ðq1;2; ~q1;2Þ; QB; ~QB). In all vacua the gauge groupSUð2Þs is
broken through the Higgs mechanism because some compo-
nent of M gets a nonzero vacuum expectation value (vev).
There arevacua on themoduli spacewheremesonic operators
obtaining a vev are also charged under SUð2Þg and thus the
symmetry SUð4Þ⊇SUð2Þg × SUð2Þw ×Uð1Þt is broken to a
diagonal SUð2Þ, which by abuse of notation we will also
denote as SUð2Þw, and theUð1Þt remains. The SUð2Þg gauge
symmetry in such vacua is thus also broken through theHiggs
mechanism. At the level of the supersymmetric index the
above translates into a neat observation that the index of
SUð2ÞNf ¼ 2 theory behaves as a delta function implement-
ing the breaking of SUð4Þ to Spð4Þ [6], which gives a
physical meaning to the Spridonov-Warnaar inversion for-
mula [7] used to obtain the index of E6 SCFT in Ref. [2].
The theory in the IR consists of two baryonic operators

BT ¼ ϵ · q1 ~q2 and BT 0 ¼ ϵ ·QB
~QB [where ϵ contracts the

SUð2Þg indices] coupled to ΦB and the E6 SCFT through a
superpotential. We can remove these fields by adding new
chiral fields μ, T, and T 0 with a quadratic superpotential

μΦB þ TBT þ T 0BT 0 : ð4Þ

We conclude that the procedure of deforming theory B,
gauging the SUð2Þs enhanced symmetry, and adding appro-
priate singlet fields and superpotential terms gives us the E6

SCFT by itself. Note that in the construction many sym-
metries are not manifest. The N ¼ 1 supersymmetry is

TABLE I. The field content of the Lagrangian description of the E6 SCFT. We denote the charges under Uð1Þs
with the enhancement to SUð2Þs not manifest in this description. The upper part of the table is the SUð3Þ SCFT. The
middle part has the chirals added when gauging SUð2Þs and the bottom part has the gauge singlet fields.

Field SUð3Þ Uð1Þs SUð3Þa SUð3Þb Uð1Þr̂ Uð1Þt Uð1Þy SUð2Þw
ΦA 8 0 1 1 2 −1 0 1

Q1
A 3 1

3
3 1 0 1

2
−1 1

~Q1
A 3̄ − 1

3
3̄ 1 0 1

2
1 1

Q2
A 3̄ − 1

3
1 3 0 1

2
−1 1

~Q2
A 3 1

3
1 3̄ 0 1

2
1 1

q 1 1 1 1 0 − 1
2

0 2

~q 1 −1 1 1 0 − 1
2

0 2

T 1 0 1 1 2 1 0 1
T 0 1 0 1 1 2 −1 0 1
μ 1 0 1 1 0 1 0 3
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expected to enhance to N ¼ 2 in the IR and the flavor
symmetry SUð2Þ × SUð6Þ to enhance to E6.
Deformation and gauging on side A.—Let us discuss

now the procedure in the Lagrangian duality frame. Since the
two duality frames are exactly equivalent (this is a conformal
duality), we should be able to retrace all our steps on side A
of the duality. First, the superpotential deformation we
introduce, −QBΦB

~QB, breaks no (N ¼ 2) flavor sym-
metries and the natural candidate on side A for it to map
to is −CðτAÞQi

AΦA
~Qi
A with CðτAÞ a proper normalization

factor. In fact the normalization factor CðτAÞ is plausibly
infinite as the following argument suggests. Note that as we
discussed above theory B after deformation will flow to the
zero coupling locus of the conformal manifold. That point in
theory A corresponds to infinite gauge coupling (1). The
enhancement ofUð1Þs to SUð2Þs should occur in the limit of
infinite coupling of the superpotential of theory A. In that
limit we can gauge SUð2Þs symmetry and straightforwardly
repeat all the steps performed on side B.
This procedure provides us with a Lagrangian descrip-

tion of the E6 SCFT. The Lagrangian is not conformal,
does not have the manifest non-Abelian structure of the
flavor symmetry, has onlyN ¼ 1 supersymmetry, and only
makes sense in the limit of one of the superpotential
couplings taken to infinity.
To summarize, the Lagrangian we propose is the SUð3Þ

N ¼ 2 SQCD with Nf ¼ 6 with the superpotential
deformed to the SUð2Þs enhanced point and the SUð2Þs
symmetry subsequently gauged with an addition of two
fundamental chiral fields and three singlet chirals. The
charges of the fields are summarized in Table I and one
should include any superpotential term consistent with those.
a maximization.—Since the Lagrangian we have

obtained hinges on Uð1Þs symmetry being enhanced to
SUð2Þs for a fine-tuned value of the superpotential cou-
pling, which moreover is infinite, one can wonder how
useful it is. Nevertheless, there are quite a few computations
that can be performed relying only on symmetries, matter
content, and gauge interactions of the Lagrangian. As a
simple example we can use the Lagrangian to compute the
a and c anomalies of the E6 SCFT utilizing amaximization
[8]. The only Abelian symmetry we have that can be
admixed to the R symmetry isUð1Þt and thus parametrizing
the IR R charge as rIR ¼ r̂þ St, we obtain that using the
matter content and the gauge interactions detailed in Table I
the trial atrialðSÞ and ctrialðSÞ anomalies are given by

atrialðSÞ ¼ −
3

32
ð3S3 þ 27S2 − 88Sþ 44Þ;

ctrialðSÞ ¼ −
1

32
ð9S3 þ 81S2 − 242Sþ 88Þ: ð5Þ

The trial a anomaly is maximized for S ¼ 4
3
, which

gives us

aIR ¼ 41

24
; cIR ¼ 13

6
: ð6Þ

These are the correct anomalies of the E6 SCFT.
Partition functions.—Another natural check of the

Lagrangian would involve the computation of the super-
symmetric index, and that check was in fact performed
in Ref. [2] though not given the physical meaning we
advocate in this note. In addition to the index there are other
partition functions one can straightforwardly compute
given a Lagrangian. These include the lens space index
[9] and the S2 × T 2 [10] partitions functions. These
partition functions capture also information about nonlocal
objects, which are not counted by the supersymmet-
ric index.
Let us discuss here a particular case of the lens space

index, S3=Zr × S1 partition function, i.e., the limit of
infinite r when it becomes the supersymmetric index of
the dimensionally reduced theory. The E6 SCFT reduced
to three dimensions has a mirror Lagrangian description
as a quiver theory [11]. We can compute supersymmetric
partition functions in the mirror frame and compare them to
the computation performed in our Lagrangian reduced to
three dimensions. The equality of S3 partition functions is
guaranteed by the fact that the correct index in four
dimensions, the S3 × S1 partition function, is produced
by the Lagrangian. However, the three-dimensional index,
the S2 × S1 partition function, will be an independent
check. The N ¼ 4 index in three dimensions is given by

I ¼ Trð−1ÞFqjþ1
2
ðRHþRCÞtRH−RC; ð7Þ

where we use the notations of Ref. [12]. Taking the matter
content of the dimensionally reduced theory and the map of
the R charges ðRH; RCÞ ¼ ðR;−rÞ, we can compute the
index of the dimensionally reduced theory without any S2

fluxes for global symmetries to be

I ¼ 1þ 78q1=2t − ð1þ 78Þqþ 2430qt2 þ � � � : ð8Þ

The spectrum falls into E6 irreps and is consistent with the
index computed in the mirror description. Computing the
index is absolutely standard but one should be careful with
two points. First, the contour of integration for SUð2Þs has
to separate sequences of poles converging to zero and
infinity in the SUð2Þs fugacity coming from q and ~q [2].
Second, one has to be careful with global properties of
the gauge and flavor groups. For example, SUð3Þc⊇
ðSUð2Þw ×Uð1ÞrÞ=Z2 and the Z2 implies that SUð2Þw
and Uð1Þr fluxes can be simultaneously half integer.
Similarly, since Uð1Þs charges of the SUð3Þ gauge theory
are fractional, taking (half-)integer fluxes for SUð2Þs which
are not multiples of three, the fluxes for SUð3Þ take values
in an appropriately shifted lattice.
A simple version of the index is the Coulomb limit [12],

taking t; q → 0 while keeping the ratio qð1=2Þ=t ¼ x fixed.
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In this limit the dependence on fugacities under
which Higgs branch operators are charged drops out
but the dependence on the fluxes remains. Given that
the index in the Coulomb limit of the SUð3Þ SQCD is
ICðma

1; m
a
2; m

b
1; m

b
2; m

s; myÞ (where m s are the S2 fluxes
for global symmetries), gauging the SUð2Þs symmetry and
adding the fields in Table I it can be shown that the
Coulomb index of the E6 SCFT is

IE6

C ðma
1; m

a
2; m

b
1; m

b
2; m

w ¼ ms;myÞ
¼ xjmsj × ½ð1þ xÞICð;ms; Þ
− xICð; jmsj − 1; Þ − ICð; jmsj þ 1; Þ�: ð9Þ

This expression has to be invariant under the Weyl
symmetry of E6 and one can check that indeed it is.
Some details of this computation are provided in the
accompanying Mathematica notebook [13].
Next, we consider the N ¼ 1 supersymmetric S2 × T 2

index [10]. Here, one works in a background with an
R-symmetry gauge field with unit flux on the S2, and in
order for the fields to live in well-defined bundles, one must
pick an R symmetry under which they have integer charges
[14]. Our choice of Uð1Þr̂ satisfies this property. In
particular, this R symmetry preserves all the flavor sym-
metry of the N ¼ 2 theory, and so we can check that the
index of the above Lagrangian theory demonstrates the
expected E6 property. The S2 × T 2 index is a function of
the complex structure of the torus, q ¼ e2πiτ, as well as
holonomies for flat background gauge fields on the torus
coupled to each flavor symmetry, which are organized into
a complex fugacity, z ¼ e2πiðA1þτA2Þ. For the Lagrangian
described above, the relevant fugacities are t for the Uð1Þt
and αa, a ¼ 1;…; 6, for the flavor symmetry that we expect
to enhance to E6. The index admits a double series
expansion in q and t, and we can observe that the
dependence on αa at each order organizes into E6 repre-
sentations. The computation here is again mostly straight-
forward, with similar subtleties as in the three-dimensional
index discussion. In the attached Mathematica notebook
[13] we provide the full expression of this index and here
we present the result for the first few terms in the expansion

IS2×T2 ¼ t11=2ð1þ t78þ t22430þ t343758þ�� �Þ
þqt11=2½1þ78þ tð1þ278þ2430þ2925Þ
þ t2ð78þ22430þ2925þ43758þ105600Þþ �� ��
þq2t11=2ð3þ278þ650þ2430þ���Þþ �� � :

ð10Þ

An interesting feature is that the q → 0 limit of this index
coincides, up to an overall factor, with the Hall-Littlewood
limit of the superconformal index of the E6 SCFT [15].
Thus, the S2 × T2 index ofN ¼ 2 theories with our choice

of R symmetry appears to be an elliptic generalization of
the Hall-Littlewood index and Higgs branch Hilbert series.
Generalizations.—The derivation of a Lagrangian for the

E6 SCFT suggested here is based on giving up the manifest
N ¼ 2 supersymmetry and manipulating enhanced sym-
metry of special points of the parameter space. We can
apply the same procedure to an infinite sequence ofN ¼ 2
SCFTs. Take class S AN−1 theory corresponding to a sphere
with two maximal and N − 1 minimal punctures. This
theory has two dual descriptions, one as a Lagrangian linear
quiver and the second as the TN SCFT coupled to a
superconformal tail terminating with an SUð2Þ gauge group
[16]. We can apply our procedure to ungauge this SUð2Þ,
which transforms two minimal punctures into an SUð2Þ ×
Uð1Þ L-shaped puncture. Turning on then a general vev on
the baryonic branch one removes the N − 3 remaining
minimal punctures ending with a sphere with two maximal
and one L-shaped puncture, which is a nontrivial SCFT.
Our procedure can be thought of as providing a Lagrangian
for these models, which can be used, e.g., to compute the
supersymmetric partition functions.
It would be very interesting to generalize this type of

construction to other SCFTs in the N ¼ 2 theory space
[16]. Although the Lagrangian we obtain requires singular
superpotentials we have illustrated that it is still very useful
to obtain nontrivial results about the E6 SCFT. It would be
extremely interesting to perform further checks of our
proposal as well as to extract new information about these
strongly coupled field theories.
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