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We explore properties of the universal terms in the entanglement entropy and logarithmic negativity
in 4D conformal field theories, aiming to clarify the ways in which they behave like the analogous
entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-
dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular,
if and only if the central charges obey a > c, the entanglement across certain classes of entangling surfaces
can become arbitrarily negative, depending on the geometry and topology of the surface. The negative
contribution is proportional to the product of a − c and the genus of the surface. Similarly, we show that in
a > c theories, the logarithmic negativity does not always exceed the entanglement entropy.
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Introduction.—States of a quantum mechanical system
are distinguished by the presence of entanglement.
Oftentimes one characterizes this by bipartitioning the
system and computing the entanglement entropy S. In
continuum quantum systems, the natural subdivision is
geometric: we partition the state across a fiducial entan-
gling surface. While (for pure states) S is the best measure
of the total amount of quantum entanglement between a
region and its complement, other measures provide addi-
tional information about the pattern of entanglement for the
same bipartition. A natural question is, given a fixed state of
the system, how does entanglement depend on the geom-
etry and topology of the entangling surface?
While S is plagued with UV divergences in a continuum

quantum field theory (QFT), its universal piece contains
nontrivial physical information, including central charges
and RG monotones [1–4]. In many respects, these universal
terms are the natural counterparts of quantum-mechanical
entropies, which are positive. Another interesting measure
is the logarithmic negativity E [5–7], which gives an upper
bound on distillable entanglement in quantum mechanics,
and is thus strictly greater than the entanglement entropy.
These intuitive analogies with quantum mechanics

suggest that, in QFT, the universal, cutoff-independent
terms of S and of E − S are also positive definite. Indeed,
this appears to be true for spherical entangling surfaces
in vacuum states of conformal field theories (CFTs) in
flat spacetime [2–4,8]. As we will prove, however, these
signs depend nontrivially on the topology of the entangling
surface and, in particular, can be negative.
We focus on connected entangling surfaces in 4D CFTs,

which are Riemann surfaces. While for simple topologies
the universal terms are positive definite, we show that one
can always pick complex enough entangling surfaces to
violate this bound. Curiously, the violation hinges on the

difference of the central charges a and c. Specifying to
entanglement entropy, the universal part of S becomes
negative for a suitable choice of surface if and only if
a > c; the effect is linear in the product of a − c and the
genus of the surface, exhibiting a novel interplay between
central charges and topological sensitivity of entanglement.
Entanglement measures.—Consider a (relativistic) QFT

on a d-dimensional spacetime B; the state ρ (¼ jψihψ j if
pure) is defined on a spatial Cauchy slice Σ at fixed time.
The biparitioning is provided by geometrically dividing
Σ ¼ A∪Ac across a smooth spacetime codimension-2
entangling surface ∂A. Defining the reduced density
matrix ρA ¼ TrAcðρÞ, the entanglement and Rényi entro-
pies are

SðρAÞ ¼ −TrðρA log ρAÞ ¼ lim
q→1

SðqÞðρAÞ;

SðqÞðρAÞ ¼
1

1 − q
log TrðρAqÞ: ð1Þ

Another quantity of interest to us will be the negativity
which is defined in terms of an auxiliary partial transposed
density matrix ρΓ. Picking a basis, jrii for A and jlni for
Ac, one defines the map ρ → ρΓ as

hrilnjρΓjrjlmi ¼ hrilmjρjrjlni: ð2Þ

Thence, the logarithmic negativity is given in terms of the
trace norm ‖O‖, viz.,

EðρÞ ¼ log ‖ρΓ‖ ¼ log
h
Tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρΓÞ†ρΓ
q �i

: ð3Þ

It is important to note that the negativity provides an
upper bound on entanglement inherent in the state and as
such satisfies E ≥ SA. For mixed states the negativity is

PRL 115, 171601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 OCTOBER 2015

0031-9007=15=115(17)=171601(5) 171601-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.171601
http://dx.doi.org/10.1103/PhysRevLett.115.171601
http://dx.doi.org/10.1103/PhysRevLett.115.171601
http://dx.doi.org/10.1103/PhysRevLett.115.171601


notoriously hard to compute (see [9–12] for results in
2D CFTs). For pure states one can relate it to the Rényi
entropy [9], viz., Eðρ ¼ jψihψ jÞ ¼ S1=2ðρAÞ. This was
exploited in [8] to explore negativity for ball-shaped
regions with ∂A ¼ Sd−2 in a CFT vacuum.
Local dynamics of a QFT implies that the measures,

collectively denoted as E ¼ fS; SðqÞ; Eg are UV divergent.
Given a UV cutoff ϵ one finds [13]

E ¼
Xd−4
k¼0

Ek

ϵd−2−2k
−
�
Cuniv½E� log lA

ϵ þ C0; d ¼ even;

ð−1Þd−1Cuniv½E�; d ¼ odd:

ð4Þ

The leading UV divergence obeys an area law,
E0 ∝ areað∂AÞ, followed by scheme-dependent (but
state-independent) subleading pieces Ek. Cuniv½E� depends
on the state and captures important universal physical
information; for ∂A ¼ Sd−2 in the vacuum, for instance,
Cuniv½SðρAÞ� is a measure of degrees of freedom.
Entangling geometries.—Our specific interest will be in

d ¼ 4, where ∂A can be taken to be a Riemann surface of
arbitrary topology; we will explore how topology imprints
itself on the entanglement. Two particular issues will be
of concern to us: (i) Is Cuniv½SðρAÞ�≡ Su sign definite?
(ii) Consider the ratio

X ¼ Cuniv½EðρÞ�
Cuniv½SðρAÞ�

ð5Þ

defined originally in [8]. Is X − 1≡ X̂ positive definite?
Recently, variants of this question have been addressed

by several authors: [14,15] examined the shape dependence
of entanglement entropy for entangling surfaces of spheri-
cal topology in d dimensions. The latter conjectured that
∂A ¼ Sd−2 minimizes the universal term in that topological
class. In [16], the authors searched for surfaces that
maximize entanglement entropy keeping the area of ∂A
fixed. They related the construction to a well-known
geometric problem called the Willmore conjecture [17].
Their conclusion was that in d ¼ 4, the maximizer over
all topological classes is ∂A ¼ S2. We will make use of
their techniques to show that this is, in fact, not true for
general CFTs, and appears to rely on the tacit assumption
that a ¼ c.
To make progress we will make use of a result for

Cuniv½SðqÞ�≡ SuðqÞ in 4D CFTs [18] [n.b. Su ¼ Suð1Þ�:

SuðqÞ ¼
faðqÞ
2π

R∂A þ fbðqÞ
2π

K∂A −
fcðqÞ
2π

C∂A: ð6Þ

The geometric quantities depend on intrinsic and extrinsic
geometry of ∂A ⊂ B. For an embedded two-surface X,

RX ¼
Z
X
d2x

ffiffiffi
γ

p γR;

KX ¼
Z
X
d2x

ffiffiffi
γ

p �
Kα

ijK
αij −

1

2
ðKα i

i Þ2
�
;

CX ¼ 2

Z
X
d2x

ffiffiffi
γ

p
Cμνρσtμsνtρsσ: ð7Þ

Here, γij is the intrinsic metric on X, gμν that of the full
spacetime B, Kα

ij is the extrinsic curvature of X with α ¼
ft; sg indexing the two normal directions (one timelike tμ

and the other spacelike sμ), and CX is the pullback of the
Weyl tensor Cμνρσ onto X.
We see here a clean separation between the geometric

data and the intrinsic field theory features captured by the
coefficient functions fa;b;cðqÞ. In the q → 1 entanglement
limit [1],

fað1Þ ¼ a; fbð1Þ ¼ fcð1Þ ¼ c: ð8Þ

For generic q, these functions are known not to obey a
universal form.
We now have some ammunition to tackle the questions

we raised. For simplicity, we will take B ¼ R3;1 (or
equivalently B ¼ S3 ×R as appropriate for radial quanti-
zation). These backgrounds being conformally flat, one
finds no contribution from fcðqÞ, for C∂A ¼ 0. If we further
restrict attention to regions A which lie on constant time
slices, Kt

μν ¼ 0. We can then focus on the purely spatial
geometry of 2-surfaces ∂A embedded in either R3 or S3.
This allows us to use some useful results in Riemannian
geometry to make precise statements.
With this understanding let us focus attention on

SuðqÞ and X̂ , and ask if they obey any sign-definiteness
properties.
Let us start by noting some basic results that hold for

unitary CFTs. The central charges a, c are positive definite
and their ratio is bounded as [19]

1

3
≤
a
c
≤
31

18
: ð9Þ

The bounds are tighter in superconformal field theories.
Recently, it has been argued that the Rényi coefficient
functions are not independent and satisfy

fbðqÞ ¼ fcðqÞ ¼
q

q − 1
½a − faðqÞ − ðq − 1Þfa0ðqÞ�:

ð10Þ

The first of these equalities has not been shown in full
generality but holds in both free and holographic CFTs
[20]. We will, however, assume this in what follows. The
second has been proved directly in Rényi index perturba-
tion theory [21]. One can further prove

PRL 115, 171601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 OCTOBER 2015

171601-2



faðqÞ > 0; fa0ðqÞ < 0 ⇒ fcðqÞ > 0; ∀ q; ð11Þ

where we used (10) in obtaining the implication. The
inequalities on faðqÞ follow from the fact that SðρAÞ obeys
general inequalities for anyA [22], and that SðρAÞ ∝ faðqÞ
for ∂A ¼ S2.
To make progress we need to examine the geometry of

the Riemann surface ∂A. The intrinsic curvature contribu-
tion in (6) is topological; for compact X the Gauss-Bonnet
theorem relates it to the Euler number

RX ¼ 8πð1 − gÞ: ð12Þ

The extrinsic contribution can be noted to be positive
definite (using Kt

ij ¼ 0, Ks
ij ¼ Kij)

KX ¼
Z
X
d2x

ffiffiffi
γ

p �
Kij −

1

2
γijγ

klKkl

	
2

: ð13Þ

This by itself is not sufficient, but we can invoke some
geometry, see [16]. Introduce the Willmore energy func-
tional [17] (for surfaces embedded in R3 we can drop the
contribution from the area of the surface)

WX⊂S3 ¼
1

4

Z
X
d2x

ffiffiffi
γ

p �
1þ 1

4
ðγijKijÞ2

	
: ð14Þ

This functional was introduced by Willmore, who explored
surfaces which minimize their mean curvature. It obeys
WX ≥ 4π for all X, and is minimized by the equatorial
S2 ⊂ S3. Willmore conjectured that at g ¼ 1, the Willmore
functional obeys WX ≥ 2π2. This result was proven
recently [23]; the unique minimizer is the Clifford torus,
whose stereographic projection onto R3 yields a torus with
τ ¼ i=

ffiffiffi
2

p
. This conjecture was generalized to higher genus,

where there exist so-called Lawson surfaces [24] Lg for
g ≥ 2 satisfying

4π ≤ WLg
≤ 8π; ð15Þ

which are conjectured to be the unique minimizers of WX
[25]. The precise value of WLg

is unknown, but at every
genus it has been proven that there is a surface that obeys
(15), irrespective of being the minimizer [25,26]. These
results will suffice for our purposes. (Lawson surfaces tend
to be bulgy with small handles, especially as g increases.
We encourage the reader to peruse the numerically con-
structed surfaces in Table I of [27] or Fig. 1 of [28].) See
[29] for further details.
To make use of the bounds on the Willmore functional,

we exploit the Gauss-Codazzi equations, which are geo-
metric identities which relate intrinsic and extrinsic curva-
tures. The relation we need is simple (cf. [16]):

WX ¼ 1

2
ðRX þKXÞ: ð16Þ

For compact X we are immediately in business, since
we can use the topological constraint on the Euler number
and the geometric constraint (15) of Lawson surfaces to
examine bounds on Su and X̂ . In particular, plugging (16)
into (6), we dial up the genus, driving R∂A negative, while
restricting to Lawson surfaces ∂A ¼ Lg which have WLg

bounded from above.
Entanglement bounds.—Let us begin by studying the

bounds on the universal part of entanglement entropy. It is
useful to treat the genus g ¼ 0 cases first and then consider
g ≥ 1. For a spherical entangling surface, it is known from
[3] that the Rényi entropies are related to thermal entropies
on the hyperbolic cylinder H3 ×R. The geometry is such
that the extrinsic curvature term K∂A vanishes and so
SuðqÞ ¼ 4faðqÞ, which we have shown is positive definite,
cf. (11). It then follows as described in [8] that X̂ ¼
ð1=aÞfað12Þ − 1 is also positive definite. Assuming the

sphere is the minimizer of X̂ at g ¼ 0, this establishes
positivity for all g ¼ 0 entangling surfaces. Alternatively,
positivity follows from (19) if one assumes that αW > 0
for all CFTs. As we will discuss, this is true in all known
examples.
Let us turn to entangling surfaces with nontrivial top-

ology. Simplifying (6) using (16),

Su ¼
c
2π

�
2W∂A þ

�
a
c
− 1

	
R∂A

�

¼ c
2π

�
2a
c
W∂A þ

�
1 −

a
c

	
K∂A

�
: ð17Þ

These equations make it clear that there is a curious
interplay between the sign of the central charge difference
c − a, the topology and geometry of ∂A, and the sign of Su.
While there is no constraint from toroidal topology
(as c > 0, W > 0), we can infer that for g ≥ 2:
(i) a ≤ c ⇒ Su > 0, ∀ ∂A owing to the lower bound on
the Willmore functional and positivity of K.
(ii) a > c ⇒ Su≷0. The indefinite sign owes its origin
to the fact that there are Lawson surfaces which have genus-
independent bounded W (15), but R that can be made
arbitrarily negative by ramping up the genus. The sign flip
of Su across such surfaces occurs at a critical genus

gc ¼ 1þWLgc

4π

c
a − c

: ð18Þ

We note in passing that it is strongly believed that WLg

monotonically increases with g [30].
In [16] it has been conjectured that ∂A ¼ S2 minimizes

Su (assuming a ¼ c). We now see that when a > c, there is
no minimizer: Su is unbounded from below.
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Note that not all higher genus surfaces will render Su < 0.
However, this is guaranteed to occur above some critical
genus for all surfaces whose Willmore energy grows slower
than linearly in g. There are likely other families of surfaces
besides the Lawson surfaces, as well as isolated surfaces that
exist for particular values of g, that satisfy this criterion. For
example, one can smoothly deform Lawson surfaces with
fixed topology. (See [28] for such a construction at g ¼ 2,
especially Figs. 2 and 5 therein.)
Strictly speaking, the results above pertain to bounded

regions A so that ∂A is compact. For noncompact
entangling surfaces we are not aware of any obvious upper
bound on W.
Let us now turn to the negativity and consider the

quantity X̂ which was conjectured in [8] to be positive
definite. Using the definition in terms of the Willmore
functional and the expressions (10) we can write

X̂ ¼ αRR∂A þ 2αWW∂A
2cW∂A þ ða − cÞR∂A

;

αR ¼ 1

2
fa0

�
1

2

	
þ c; αW ¼ fc

�
1

2

	
− c: ð19Þ

Wecan infer that the sign of X̂ depends on the coefficientsαR
and αW in a nontrivial fashion. (i) For a toroidal entangling
surface, X̂ ∝ αW and so positivity requiresfcð12Þ > c. This is
seen to be true in all known examples. (ii) At higher genus, if
a ≤ c we require that αR ≤ 0 to ensure X̂ ≥ 0. (iii) On the
otherhand, ifa > c,wecaneasilyendupwithnegativevalues
of X̂ : even if αR ≤ 0 there is some genus g for which X̂ ≤ 0.
This is becausewhile the numerator is ensured to be positive,
the denominator can be made arbitrarily negative by picking
an appropriate Lawson surface. The situation cannot be
remedied by changing the sign of αR in any obviousmanner.
Examples.—We have derived above some general con-

ditions for the positivity of Su and X̂ in terms of the central
charges. In Table I we provide explicit results for a class of
free and holographic CFTs [18,21,31].
Several comments are in order. First, all known examples

obey the inequalities αW > 0 and αR < 0. We believe that
these are likely to be true for all CFTs.

Second, X̂ is shape independent for the free scalar. It
follows from [21] that X̂ is shape independent only for
theories whose faðqÞ equals that of a free scalar; besides
the scalar itself, there are no known examples of such
theories.
Finally, the free vector field is the only theory in Table I

with a > c, and indeed, we see that both Su and X̂ become
negative for sufficiently negativeR and upper-boundedW,
as happens for Lawson surfaces. Assuming monotonicity
of WLg

as a function of g, the critical genus is gc ¼ 4. In
arriving at this conclusion, we are assuming that the
modular Hamiltonian that defines faðqÞ includes the effects
of the edge modes described in [32,33]. This is necessary
for Su to be determined by the a central charge for spherical
entangling regions. Curiously, ignoring these modes leads
to Su being determined by â ¼ 16

31
a [34] which satisfies

â < c. Exploring the dependence of Su on the entangling
surface should reveal whether it is controlled by â as
opposed to the physical central charge a; our diagnostic
would simply involve a sign check for a g ¼ 5 Lawson
entangling surface.
Discussion.—We have found that in CFTs with a > c,

the universal term in entanglement entropy Su necessarily
becomes negative for certain higher genus entangling
surfaces. The negativity ratio X̂ also generically becomes
negative for a > c; if αR ≤ 0 for all CFTs, this can only
happen for a > c. It would be nice to establish whether
αR ≤ 0 and αW > 0 identically, as suggested by all
examples.
Aside from the free vector, theories with a > c include

the IR fixed point of the SUð2Þmodel of [35], as well as the
non-Lagrangian Gaiotto-type TN theories [36]. The latter
are IR limits of world-volume theories of N M5-branes
wrapping genus-ĝ Riemann surfaces. A characteristic
example is the AN−1 theory preserving N ¼ 2 SUSY,
which has 24ða − cÞ ¼ ðN − 1Þðĝ − 1Þ for ĝ > 1. Central
charges for a larger family of related N ¼ 1 theories with
a > c are given in [37]. At large N [38], where a, c ∝ N3,
there is an interesting relation between N and the entan-
gling surface topology: namely, the critical genus gc in (18)
scales like N2. The growth of gc with large N will be true of

TABLE I. Results for the universal terms in Rényi entropy and their implications for Su and X̂ in a class of CFTs. We have chosen to
write the answers in terms of the a central charge. In the last line, we have defined xq ≡ ð1=4qÞð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8q2

p
Þ.

Theory a
c faðqÞ fcðqÞ αR αW Su X̂

Scalar 1
3

ð1þqÞð1þq2Þ
4q3 a 3faðqÞ − 11

2
a 33

4
a 3W−R

π a 11
4

Fermion 11
18

ð1þqÞð7þ37q2Þ
88q3 a 3ð1þqÞð7þ17q2Þ

88q3 a − 7
4
a 261

88
a 36W−7R

22π a 77R−261W
28R−144W

Vector 31
18

1þqþ31q2þ91q3

124q3 a 3ð1þqÞð1þ11q2Þ
124q3 a − 11

62
a 63

124
a 13Rþ36W

62π a −11Rþ63W
26Rþ72W

Free N ¼ 4 1 1þqþ7q2þ15q3

24q3 a ð1þqÞð1þ3q2Þ
8q3 a − 11

12
a 13

8
a W

π a −11Rþ39W
24W

Einstein 1 q
2ðq−1Þ ð2 − x2q − x4qÞa 3q

2ðq−1Þ ðx2q − x4qÞa − 3
4
a 1þ6

ffiffi
3

p
8

a
W
π a −3Rþð1þ6

ffiffi
3

p ÞW
8W
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any holographic theory with a sensible derivative expansion
in the bulk [39].
It is worth noting that a − c controls and relates to many

phenomena in CFT and holography. These include the
mixed current-gravitational anomaly [40] in SCFTs, super-
conformal indices and their high temperature asymptotics
[41–43], violations of the KSS bound on η=s in holographic
CFTs [44,45], and the size of the single-trace higher spin
gap in large N SCFTs [46].
Finally, it is a remarkable and still mysterious fact that

nearly all “traditional” CFTs have a ≤ c rather than a > c.
Our result may be regarded as suggesting a naturalness of
such asymmetry, along the lines of [41]. It would be very
interesting to make this more concrete.
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