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We construct steering inequalities that exhibit unbounded violation. The concept was to exploit the
relationship between steering violation and the uncertainty relation. To this end, we apply mutually
unbiased bases and anticommuting observables, known to exhibit the strongest uncertainty. In both cases,
we are able to procure unbounded violations. Our approach is much more constructive and transparent than
the operator space theory approach employed to obtain large violation of Bell inequalities. Importantly,
using anticommuting observables we are able to obtain a dichotomic steering inequality with unbounded
violation. Thus far, there is no analogous result for Bell inequalities. Interestingly, both the dichotomic
inequality and one of our inequalities cannot be directly obtained from existing uncertainty relations, which
strongly suggest the existence of an unknown kind of uncertainty relation.
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Introduction.—Quantum theory is the primary mainstay
of our understanding and formal description of nature.
Moreover, it constitutes a perfect empirically confirmed
formal construction. Despite many years of continuous
attempts, a commonly accepted interpretation of the math-
ematical formalism of quantum mechanics has not been
found. The phenomenon of quantum correlations, espe-
cially entanglement, is believed to be extremely amazing
and eludes the schemes of classical thinking. Multiannual
conceptual efforts to grapple the “spooky actions for
spatially separated systems” began with the fundamental
work of Einsten, Podolsky, and Rosen (EPR) [1] and
continue until this day. Nowadays, we possess the knowl-
edge that quantum correlations—which still remain a great
mystery—allow experimental realization. Additionally,
they can be controlled and implemented in nontrivial tasks.
Secure quantum communication as well as quantum
calculations are among them. Such promising perspectives
to practically use quantum correlations as a resource clearly
demonstrate the importance of the undertaken efforts to
improve our deep understanding of this phenomenon.
The concept of quantum steering was first introduced by

Schrödinger in 1935 [2] as a generalization of the EPR
paradox [1] for bipartite systems in arbitrary pure entangled
states and arbitrary measurements by one party. Consider
two separated observers sharing entanglement. The first
observer, by measurement on his system, can steer the state
of the system held by the second observer. Like the debate
of the EPR paradox, the notion of quantum steering had
been ignored for a long time until it was recovered by
Wiseman, Jones, and Doherty [3], where they introduced
quantum steering as an information task. Like in the Bell
scenario, the nonclassicality revealed by the steering
phenomenon is expressed by means of violation of the

so-called steering inequalities. It should be noted that not
all entangled states lead to steering, and there are states that
violate steering inequalities but do not violate any Bell
inequality [3,4].
Recently, unbounded violations of Bell inequalities were

intensively analyzed, mostly by means of advanced tools of
mathematical physics [5–7] as well as communication
complexity methods [8,9]. The existing results either are
mostly random constructions having their origin in existing
knowledge from the field of operator spaces or are
derivatives of quite complicated communication complex-
ity protocols.
In this Letter we analyze the unbounded violation of

steering inequalities. We exploit an intrinsic relationship of
steering phenomenon with the uncertainty principle (see,
e.g., Ref. [10]) and apply the measurements that offer
strong uncertainty, such as mutually unbiased bases
(MUBs) and Clifford observables [11]. Until now it was
not known whether quantum-correlation-type steering is
equivalent to Bell-type correlations in the regime of large
violation. Here, we provide two results that address this
issue: (i) using a mutually unbiased basis, we obtain a
larger violation than the largest quantum violation of Bell
inequalities, and (ii) by means of Clifford observables, we
provide unbounded violation of steering inequality with
binary outputs—a feature that is still unknown for Bell
inequalities with binary outputs for one of the parties.
Our inequalities are extremely simple in comparison to

the existing Bell inequalities exhibiting large violation
[5,6,12], as well as to random constructions of steering
inequalities based on the operator space approach, provided
in the companion paper [13]. While one of our violations
is a consequence of the existing fine-grained uncertainty
principle [14] obtained in Ref. [15], our other results—the
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unbounded violation for binary observables and a variant of
large violation with MUBs—cannot be derived from any
existing uncertainty principles.
Steering inequality.—Herein, we will consider the

following steering scenario [13,16], which is equivalent
to the one in Ref. [3]. Suppose there are two observers
(Alice and Bob). Alice can choose among n different
measurement settings labeled by x ¼ 1;…; n., each of
which can result in one of m outcomes, labeled by
a ¼ 1;…; m. Suppose the local Hilbert space dimension
for Bob is d. The available data are the steered states, they
are positive operators on HB : σax ≥ 0, and by the
no-signaling principle [17], we have that TrðPaσ

a
xÞ ¼ 1

and it is independent of x. We will denote the set of those
operators as σ ¼ fσax∶ x ¼ 1;…; n; a ¼ 1;…; mg and call
it (n;m; dimðHBÞ) assemblage or simply assemblage. The
set of all assemblages will be denoted by Q. It is well
known [18,19] that any assemblage σ has a quantum
realization; i.e., it can be generated remotely by performing
measurements on a subsystem of bipartite quantum states.
More precisely, for any assemblage σ, there exists a Hilbert
space HA such that

σax ¼ TrA(ðEa
x ⊗ 1BÞρ); ð1Þ

for every x and a, where ρ ∈ BðHA ⊗ HBÞ is a density
matrix and fEa

xgma¼1 ⊂ BðHAÞ [by BðHÞ we mean the
algebra of all bounded linear operators on H] is a positive
operator valued measurement on Alice for every x; i.e.,
Ea
x ≥ 0 for every x; a, and

P
aE

a
x ¼ 1, for every x.

If the shared state is separable, by measuring its sub-
systems, one can only generate assemblages that possess a
local hidden state model, defined as follows. The assem-
blage has a local hidden state (LHS) model if there is a
finite set of indices Λ, non-negative coefficients qλ such
that

P
λqλ ¼ 1, density matrices σλ in BðHBÞ for λ ∈ Λ,

and probability distributions fpλðajxÞga for every x and λ
[i.e., pλðajxÞ ≥ 0 and

P
apλðajxÞ ¼ 1 for every x; λ], such

that

σax ¼
X
λ∈Λ

qλpλðajxÞσλ; ð2Þ

for every x; a. We denote the set of LHS assemblages by L.
As a Bell functional (inequality) can be used to show the

incompatibilities between the local hidden variable model
and the quantum theory, we can use the steering inequal-
ities [20] to study the difference between the two sets L and
Q. First, let us define a steering inequality in the spirit of
Ref. [16]. Let F be some function from Q assemblages to
the real numbers. If SLHSðFÞ is the maximum of S over all
assemblages that admit LHS models, then S ≤ SLHSðFÞ is
called a steering inequality. Let SQðFÞ be the maximum of
F over all assemblages (recall that all assemblages have a
quantum realization [18,19]). If SQðFÞ > SLHSðFÞ, then the
steering inequality is called nontrivial; i.e., it can be

violated using entangled states. We will consider only
the linear functional from the space of assemblages to the
real numbers. In other words, we can define the steering
functional in the following way: for given natural numbers
n, m, and d, we define a steering functional F as a set
fFa

x∶ x ¼ 1;…; n; a ¼ 1;…; mg of d × d real matrices.
For a given assemblage σ, we get a real number

hF; σi ¼ Tr

�Xn
x¼1

Xm
a¼1

Fa
xσ

a
x

�
: ð3Þ

Additionally, let us define two quantities: for a given
steering functional F, we define the LHS bound of F as the
number,

SLHSðFÞ ¼ sup fjhF; σij∶ σ ∈ Lg; ð4Þ

and the quantum bound of F as

SQðFÞ ¼ sup fjhF; σij∶ σ ∈ Qg: ð5Þ

Now we are ready to define the quantum violation of F as
the number

VðFÞ ¼ SQðFÞ
SLHSðFÞ

: ð6Þ

A steering functional with large violation will tell us that
the sets L and Q are prominently different. Apart from the
above theoretical aspect, there will be many benefits when
we apply it to practical experiments [21,22] and applica-
tions [23]. However, for a given Bell or steering functional,
it is difficult to calculate its violation. Operator space theory
was shown to be a powerful tool to overcome this difficulty.
See Refs. [5,6] in the Bell scenario and Ref. [13] in
steering. For example, in scenario ðd; d; dÞ, the following
random steering functional was considered in the
companion article [13]:

Fa
x ¼

1

d

Xd
k¼1

ϵkx;aj1ihkj; x; a ¼ 1;…; d; ð7Þ

where ϵkx;a; x; a; k ¼ 1;…; d are independent Bernoulli
variables. The violation of this inequality is
O½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd= logdÞp �.
In this Letter, we are able to derive steering functionals

by using MUBs and Clifford algebra, More precisely, for
the scenario ðdþ 1; d; dÞ, when the dimension of Hilbert
space d is equal power of prime number, then we know
there exit exactly dþ 1 MUBs. By using MUBs, we can
construct a steering functional with unbounded violation of
order Oð ffiffiffi

d
p Þ. It can be seen that we can obtain larger

violation compared to the random one. On the other hand,
for the scenario ðn; 2; 2nÞ, we are able to find a dichotomic
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steering functional with unbounded violation of order
O

ffiffiffiffiffiffiffiffiffiffiðn=2p Þ≃Oð ffiffiffiffiffiffiffiffiffiffi
logd

p Þ by using Clifford observables.
Therefore, this unbounded violation reveals an interesting
and particular property of quantum steering.
Unbounded violation: Mutually unbiased bases.—Now

we are going to study a steering functional constructed by
means of mutually unbiased bases [24]. Let M1 ¼
fjϕa

1i∶ a ¼ 1;…; dg and M2 ¼ fjϕa
2i∶ a ¼ 1;…; dg be

orthonormal bases in the d-dimensional Hilbert space.
Then they are said to be mutually unbiased if jhϕa

1jϕb
2ij ¼

1=
ffiffiffi
d

p
for all a; b ¼ 1;…; d. A set M ¼ fMx ∶x ¼ 1;…ng

of orthonormal bases of Cd is said to be a set of MUBs if
Mx and My are mutually unbiased for every x ≠ y.
Given MUBs M, we define the steering functional

F ¼ fFa
xg, where

Fa
x ¼ jϕa

xihϕa
xj; x ¼ 1;…; n; a ¼ 1;…; d: ð8Þ

Our aim is to calculate VðFÞ. First, we would like to
estimate the quantity SQðFÞ. We propose the following.
Lemma 1.—Let F be the steering inequality defined in
Eq. (8). Then

SQðFÞ ¼ n; ð9Þ
and the maximal value is attained on the maximally
entangled state.
Proof of this lemma is in Appendix A in Supplemental

Material [25]. To estimate the bound of SLHS, we use
the operator norm estimation of some operator (see
Appendix A in Supplemental Material [25]). Comparing
this result with Lemma 1, we are ready to formulate one of
the main results.
Theorem 1.—If F is a steering functional determined by

MUBs as in Eq. (8), then we have

VðFÞ ≥ n
ffiffiffi
d

p

nþ 1þ ffiffiffi
d

p : ð10Þ

Proof of this theorem is in Appendix A in Supplemental
Material [25]. If the dimension d is an integer power of a
prime number, then we can always find dþ 1 MUBs [24].
In this case n ¼ dþ 1; hence, we can find a steering
functional F, with violation Oð ffiffiffi

d
p Þ. It is better than the

random one in the sense that it has a higher order of
violation.
Our result is connected to the results obtained in

Ref. [14]. In that paper the authors revealed that “non-
locality of quantum mechanics and Heisenberg’s uncer-
tainty principle are inextricably and quantitatively linked.”
They introduced a notion named “fine-grained uncertainty
relations” to characterize the “amount of uncertainty” in a
particular physical theory. For the given set of measure-
ments Ax, with x ¼ 1;…; n and the set of outputs
~a ¼ faðxÞ∶ x ¼ 1;…; ng, consider the following quantity
introduced in Ref. [14];

ξ~a ¼ max
ρ

�Xn
x¼1

pxpðaðxÞjxÞρ
�
; ð11Þ

where fpxg is a probability distribution given a priori and
p(aðxÞ)jxÞρ is the probability of aðxÞ when we measure x.
This quantity forms a fine-grained uncertainty relation for
this set of measurement settings. For the noncommuting
observables, this quantity is bounded by 1. In Ref. [15], the
author considered a special fine-grained uncertainty rela-
tion of MUBs by letting px ¼ 1=n, for every x. An upper
bound of ξ~a was obtained for all possible strings ~a. Namely,
we have the following. Proposition 1 (Ref. 15).—LetM ¼
fMx∶ x ¼ 1;…; ng be a set of MUBs in a d-dimensional
Hilbert space. For an arbitrary density matrix ρ, we have

1

n

Xn
x¼1

Trðjϕa
xihϕa

x jρÞ ≤
1

d

�
1þ d − 1ffiffiffi

n
p

�
; ∀ a ¼ 1;…; d:

ð12Þ

Therefore, ξ~a ≤ 1
d f1þ ½ðd − 1Þ= ffiffiffi

n
p �g, where we have

chosen px ¼ 1=n.
Using the above proposition, we can obtain an alter-

native violation of the steering inequality defined by the
steering functional F [see Eq. (8)]. To end with, let us
consider the LHS bound first. Assume that σ ∈ L, then

hF; σi ¼
Xn
x¼1

Xd
a¼1

Tr

�
jϕa

xihϕa
x j
X
λ

qλpλðajxÞσλ
�

≤
X
λ

qλ
Xn
x¼1

ðsup
a
Trðjϕa

xihϕa
x jσλÞÞ

�Xd
a¼1

pλðajxÞ
�

≤ nsup
a
ξ~a ≤

n
d

�
1þ d − 1ffiffiffi

n
p

�
: ð13Þ

Since the above inequality holds for any σ ∈ L, we get

SLHSðFÞ ≤
n
d

�
1þ d − 1ffiffiffi

n
p

�
: ð14Þ

Furthermore, SQðFÞ ¼ n by Lemma 1. Thus, we get the
following lower bound:

VðFÞ ≥ d
ffiffiffi
n

p
ffiffiffi
n

p þ d − 1
: ð15Þ

Still, if the dimension d is an integer power of a prime
number, the violation is lower bounded by Oð ffiffiffi

d
p Þ, which

coincides with the result of Theorem 1. The authors of
Ref. [26] conjectured that the MUBs will give the most
uncertain measurement results for the special uncertainty
relations considered in the same article.
Unbounded violation: Clifford observables.—Now we

will focus on the dichotomic case, where there are only two
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outcomes for each input setting. Let us consider operators
Ai ∈ BðC2nÞ, i ¼ 1; 2;…; 2n, with the following proper-
ties: (i) A†

i ¼ Ai, (ii) AiAj þ AjAi ¼ 2δij12n , and (iii) the
set A ¼ fAi; i ¼ 1;…; 2ng forms a linear basis of BðC2nÞ.
The algebra that is generated by these Ai’s is the Clifford

algebra. A representation of this algebra can be constructed
by tensor products of Pauli matrices [27]. Now choose
arbitrary n operators Ax; x ¼ 1;…; n from the set A.
We will consider the following projectors
Pa
x∶ x ¼ 1;…; n; a ¼ 1; 2, where

P1
x ¼

1

2
ðlþ AxÞ; P2

x ¼
1

2
ðl − AxÞ; x ¼ 1;…; n:

ð16Þ
By the above projectors, we can define a steering functional
F ¼ fFa

x ¼ Pa
x − l=2∶ x ¼ 1;…; n; a ¼ 1; 2g; i.e.,

F1
x ¼

1

2
Ax; F2

x ¼ −
1

2
Ax; x ¼ 1;…; n: ð17Þ

As before, first, we would like to estimate the quantity
SQðFÞ; direct calculation shows that SQðFÞ ¼ n=2. And
as before, to estimate the bound of SLHSðFÞ we use the
operator norm estimation (see Appendix B in Supplemental
Material [25]).
Theorem 2.—If F is a steering functional defined in

Eq. (17), then we have

VðFÞ ≥
ffiffiffi
n
2

r
: ð18Þ

The proof of the above theorem is in Appendix B in
Supplemental Material [25].
There is an alternative way to explain this unbounded

violation. By using the notion in Ref. [28], we can define a
traceless operator Fx corresponding to Pa

x as Fx ¼ P1
x−

P2
x ¼ Ax. On the other hand, if we only consider projective

measurement, we can define a dichotomic assemblage
σx ¼ σ1x − σ2x. Hence, if the LHS model exists, then

σx ¼
X
λ

pλIðx; λÞσλ; ð19Þ

where Iðx; λÞ ¼ pð1jx; λÞ − pð2jx; λÞ ∈ ½−1; 1�. So we can
define a dichotomic steering functional Fdicho as

jhFdicho; σij ¼ Tr
�Xn

x¼1

Fxσx

�
: ð20Þ

The quantum and the LHS bound can be similarly defined
as before. The following corollary holds.
Corollary 1.—Let Fdicho be the dichotomic steering

functional corresponding to the one in Theorem 2, i.e.,
Fdicho ¼ fAx∶ x ¼ 1;…; ng, then

VðFdichoÞ ≥
ffiffiffi
n
2

r
: ð21Þ

The proof is the same as the proof in Appendix B in
Supplemental Material [25]. We have

SLHSðFdichoÞ ≤ sup
λ
‖
Xn
x¼1

Iðx; λÞAx‖
∞

≤
ffiffiffiffiffiffi
2n

p
: ð22Þ

For the quantum bound, we use the dichotomic assemblage
σx ¼ ð1=2nÞAx. Thus, SQðFdichoÞ ¼ n.
Conclusions.—In this Letter, we have provided two

steering inequalities with the unbounded violation. One is
derived from MUBs with violation Oð ffiffiffi

d
p Þ in the scheme

ðdþ 1; d; dÞ, where d is an integer power of the prime
number. We obtain this result using a much simpler method
than the operator space theory approach. Interestingly, this
violation is connected to the fine-grained uncertainty rela-
tions for MUBs. The question, do stronger uncertainty
relations exist?, appeared here naturally. Another is con-
structed by using the basis of Clifford algebra with violation
Oð ffiffiffiffiffiffiffiffi

n=2
p Þ≃Oð ffiffiffiffiffiffiffiffiffiffi

logd
p Þ in the scheme ðn; 2; 2n ¼ dÞ. Our

result shows an interesting property of quantum steering,
since there does not exist a bipartite-correlation-type Bell
inequality with unbounded violation [28–30]. The math-
ematical reason for our unbounded violation was explained
in a companion paper [13], by means of the operator space
theory. It shows a different property in quantum steering
compared to Bell nonlocality. The question, is there large
violation inBell-type correlation in dichotomic case?, seems
to be a natural conclusion of this result. Recently, the
positive answer for the above question was found [31]. It
would be most intriguing and interesting to find the fine-
grained uncertainty relations using anticommuting observ-
ables as a follow-up to this work.We hope that the results we
obtained will allow a better understanding of correlations
that exist in quantum systems.
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