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Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes.
Recent experiments indicate that highly plastic regions form elongated structures that are especially
apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts
as a critical point where the length scale of those structures diverges, possibly causing macroscopic
transient shear bands. Here, we argue instead that the entire solid phase (Σ < Σmax) is critical, that plasticity
always involves system-spanning events, and that their magnitude diverges at Σmax independently of the
presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an
exponent θ that captures the stability of the material, which is observed to vary continuously with stress,
and we confirm our predictions in elastoplastic models.
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Amorphous solids, such as emulsions, sand, and
molecular glasses, are yield stress materials: they behave
as solids if the applied shear stress Σ is low, but they flow
as fluids if it is large. Unlike the melting transition, the
associated phase transition is dynamical: the solid phase is
an arrested, glassy state whose properties depend on
preparation. One such property is failure [1], which occurs
as Σ increases toward a history-dependent stress Σmax
where macroscopic flow starts. For densely prepared
materials, the stress overshoots: Σmax > Σc [2,3], where
Σc is the minimum stress at which flow can be maintained
in stationary conditions. Flow then tends to localize along
transient (but sometimes long lasting) shear bands [4]. By
contrast, for loosely prepared materials, Σmax ¼ Σc [2] and
shear banding may be avoided [5]. Despite its importance
in human applications and geophysical phenomena,
including landslides and earthquakes [6], the microscopic
mechanisms controlling plasticity and failure remain in
debate.
In granular materials, recent experiments [7–9] and

numerics [10] support that, for Σ < Σmax, plasticity occurs
via localized rearrangements, or shear transformations [11],
which tend to organize into elongated structures whose
magnitude grows as Σ → Σmax. In Ref. [10] it was argued
that for a dense initial state (Σmax > Σc), Σmax acts as a
critical point where a correlation length ξ diverges and
avalanches become system spanning, which may in turn
trigger macroscopic shear bands. This viewpoint comple-
ments the growing consensus that the reverse transition,
occurring when flows stop as the stress is decreased toward
Σc, is accompanied by a diverging length scale [12–18].
Such a “symmetric” scenario, where ξ diverges from both
sides of the transition, applies to the depinning transition

[19] of an elastic manifold pushed through a disordered
medium. Nevertheless, an alternative scenario has been
argued for in glassy systems with slowly decaying inter-
actions, predicting system-spanning avalanches (ξ ¼ ∞) in
the entire glass phase [20]. Applied to amorphous solids,
this view suggests criticality for all stresses Σ < Σmax
where plasticity occurs. This approach, however, lacks
empirical support, and its consequences on failure near
Σmax have not been investigated.
In this Letter we show that, as the stress is adiabatically

increased in the solid phase, leading to a plastic strain
ϵðΣÞ, the mean avalanche size hSi follows hSi ∼ Nθ=ðθþ1Þ

=ð∂Σ=∂ϵÞ, where N is the system size and θ is an exponent
that characterizes the stability of the structure [21]. This
result confirms that avalanches are system spanning
(ξ ¼ ∞) for all Σ < Σmax, and it further implies an addi-
tional singularity as failure is approached since ∂Σ=∂ϵ → 0

when Σ → Σmax. We suggest that data analysis used in the
literature can mistakenly interpret this singularity as a
diverging length scale. We also derive a scaling relation
between θ and the exponents characterizing the statistics of
avalanches. We test these predictions using elastoplastic
models [22,23] and show that they hold independently of
the system preparation and of the presence of shear bands
near Σmax, thus implying that macroscopic flow localization
and singularities in avalanche size are unrelated.
Elastoplastic viewpoint.—Following Refs. [22–24], we

model amorphous solids as consisting of N blocks, each
characterized by a scalar local stress σi and a local failure
threshold σthi . The overall shear stress is Σ ¼ P

iσi=N.
Stability of i is achieved if jσij < σthi . Otherwise, the block
is unstable: a plastic strain of magnitude Δϵi occurs on
some time scale τc, leading to an overall increment of
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plastic strain Δϵ ¼ Δϵi=N. Such a plastic event also
reduces stress locally by some amount Δσi ¼ μΔϵi, where
μ is the elastic modulus, and affects stress in other locations
via a long-range Eshelby field δσj ¼ Gð~rijÞΔσi [25], which
can, in turn, trigger new instabilities. For our numerics
below, we choose the specific model described in Ref. [13]
in two dimensions. Blocks then form a biperiodic square
lattice, and the elastic propagator follows approximatively
Gð~rijÞ ∝ cosð4ϕÞ=r2, where ϕ is the angle between the
shear direction and ~rij. We choose σth ¼ τc ¼ μ ¼ 1, and
Δσi ¼ −σi þ δ, where δ is a random number, uniformly
distributed in ½−0.1; 0.1�. For these choices, Σc ≃ 0.53, and
stability is easily expressed in terms of the variable
xi ≡ σthi − σi, and it corresponds to xi ∈ ½0; 2�.
Such automaton models can be used to study the

transient regime toward failure. In what follows we use
two quasistatic protocols. In the stress-control protocol, Σ is
increased just sufficiently to trigger a single instability. Σ is
fixed during the resulting avalanche and is increased again
only when this chain of events has stopped. The strain-
control protocol is identical, except that Σ decreases during
avalanches, proportionally to the plastic strain. Stress- vs
plastic-strain curves for these two protocols are shown in
Fig. 1 (from which the stress- vs total strain γ curves are
easily deduced using the relation Δγ ¼ Δϵþ ΔΣ=μ). They
essentially track each other macroscopically [although they

differ microscopically; see the insets 1(c) and 1(d)], except
when Σ reaches Σmax, if Σmax > Σc.
The transient qualitatively depends on the initial stability

of the system, characterized by the initial distribution of
local stability P0ðxÞ. If P0ðxÞ is narrow and depleted near
x ¼ 0 (corresponding to a very stable initial condition),
transient shear bands occur; otherwise, flow can remain
homogeneous [26]. In Fig. 1 we confirm these results using
a broad and a narrow distribution P0ðxÞ (see the
Supplemental Material [27] for details). We further find
that transient shear bands tend to occur if the stress-strain
curve overshoots (although we did not investigate this
correlation systematically), as is sometimes reported
[3,28,29] and argued for in Refs. [5,30]. In what follows
we focus on an avalanche-type response, for Σ below and
approaching Σmax.
Distribution of local distance to yield stress.—Mean-

field models [24,31] reveal that the distribution of local
stability PðxÞ vanishes near x ¼ 0 in a quasistatic shear at
Σc. In Ref. [21] some of us showed that stability indeed
requires the presence of a pseudogap, i.e., PðxÞ ∼ xθ with
θ > 0; otherwise, any plastic event would eventually
trigger an extensive rearrangement, and this argument also
holds in the transient regime. θ was measured in elasto-
plastic models [21] and indirectly in MD simulations
[32,33], both at Σc and after a quench at Σ ¼ 0, leading
to consistent results. In Fig. 2 we extend these results to the
transient regime. We find that θ > 0, as predicted in
Ref. [21]. However, the value of θ turns out to be a
function of the relative stress Σ=Σmax, while it converges to
a well-defined value for large system size, as shown in the
Supplemental Material [27]. After some initial decay at
very small Σ (not shown), the value of θ increases from
θ ¼ 0.174� 0.004 at Σ=Σmax ≈ 0.49 to the value θ ¼
0.6� 0.004 at Σ ¼ Σmax. This measure is consistent with
the exponent obtained in the stationary regime [13].
The value of θðΣcÞ was argued to control rheological

properties in the flowing phase as Σ → Σc from above [13]
and to imply system-spanning avalanches for Σ < Σmax

(a)

(c) (d)

(b)

FIG. 1 (color online). Stress Σ vs plastic-strain ϵ curves for both
strain- (blue) and stress-controlled (red) protocols, for (a) a broad
initial distributionP0ðxÞ and (b) a narrowP0ðxÞ. In (a) Σmax ¼ Σc,
whereas in (b) the stress overshoots and Σmax > Σc. (Insets)
Spatial maps of plastic strain measured at different strain levels.
Highly (weakly) plastic regions are indicated in yellow (blue).
Macroscopic shear localization occur in (b) but not in (a). (c),
(d) Zooming in on the stress- vs plastic-strain curves, one observes
microscopic differences between the two protocols.

(a) (b)

FIG. 2 (color online). (a) Distribution of local stability PðxÞ for
Σ=Σmax ¼ 0.49 to 0.99 in the stress-control protocol for N ¼
10242 in the case Σmax ¼ Σc. The dashed lines are direct fits of
the form PðxÞ ∼ xθ, from which we extract θ. This quantity is
shown in (b). The dashed line is the interpolation using a third
order polynomial fit.
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[20]. We now extend this latter argument to include the case
where Σ → Σmax from below.
Extreme value statistics implies that if PðxÞ ∼ xθ and the

variables xi are independent, the least stable block must be
at a distance xmin ∼ N−1=ðθþ1Þ of an instability. By defi-
nition, xmin is the increment of stress that can be added
before a new avalanche starts: the length of the vertical lines
in Fig. 1(d). Hence, following a finite stress increment of
ΔΣ, a number M ∼ ΔΣ=xmin ∼ ΔΣN1=ðθþ1Þ of avalanches
are triggered. In elastoplastic models the avalanche size S is
defined as the number of plastic events, which is approx-
imately related to the total strain of the single avalanche δϵ,
by S ≈ Nδϵ. Thus, the total strain increase Δϵ must follow
Δϵ ¼ Mhδϵi ¼ MhSi=N, where hSi is the mean avalanche
size at stress Σ. We thus get

hSi ¼ NΔϵ
M

¼ Nθ=ð1þθÞΔϵ
ΔΣ

→
Nθ=ð1þθÞ

∂Σ=∂ϵ ; ð1Þ

where ∂Σ=∂ϵ is the local slope of the stress-plastic strain
curve, and the limit corresponds to ΔΣ → 0. This central
result indicates the following. (i) If Σ is increased in the
solid phase, avalanches are system spanning (ξ ¼ ∞) even
for Σ < Σmax since their size is N dependent. Thus, the
system remains critical in the whole range Σ < Σmax as long
as plastic flow occurs, i.e., ∂Σ=∂ϵ < ∞. (ii) Avalanches
become larger as Σ → Σmax, as observed in Ref. [8], since
∂Σ=∂ϵ → 0 at Σmax.
Further scaling relations can be derived for the statistical

properties of transient avalanches for Σ < Σmax. We make
the assumption that the distribution of avalanches PðSÞ is
homogeneous, i.e., PðSÞ ¼ S−τfðS=ScÞ, where the cutoff
size scales as Sc ∼ Ldf . Here, df is the fractal dimension of
avalanches, L is the linear system size, and N ¼ Ld, where
d is the spatial dimension. From this distribution it is
straightforward to compute the mean hSi ∼ Ldfð2−τÞ.
Comparing this with Eq. (1), we get

τ ¼ 2 −
d
df

θ

θ þ 1
: ð2Þ

A similar relation holds for stationary flow [13], although
in the transient regime exponents appear to depend con-
tinuously on Σ.
Finally, we introduce an exponent γ, defined as dΣ=dϵ ∼

ðΣmax − ΣÞγ for Σ close to Σmax. Equation (1) then implies
the scaling relation

hSi ∼ ðΣmax − ΣÞ−γNθ=ðθþ1Þ: ð3Þ

These predictions are tested in Fig. 3. The inset of
Fig. 3(a) shows that the mean avalanche size, as a function
ofΔ ¼ ½ðΣmax − ΣÞ=Σmax�, grows with the system size even
far from failure. The entire solid phase is critical, as
expected from Eq. (1). Note that to test this equation,

one must consider the fact that θ ¼ θðΣÞ. In this figure we
use for θðΣÞ the third order polynomial fit of Fig. 2(b).
Using these values for θ, a beautiful collapse is observed.
The presence of system sized avalanches far from

threshold has to be distinguished from the divergence
observed close to the yield stress, hSi ∼ ðΣmax − ΣÞ−γ at
fixedN, as implied by Eq. (3). Figure 3(a) is consistent with
this relation and yields γ ≈ 1.1. According to its definition,
γ can also be directly measured from the local slope of
stress-strain curves, as is done in Fig. 3(b), where γ ≈ 1 is
found, consistent with Fig. 3(a). γ ¼ 1means that the stress
tends to Σmax exponentially fast. As shown in the
Supplemental Material [27], this appears to be valid also
if the stress overshoots and Σmax > Σc.
In Figs. 3(c) and 3(d), we measure df at Δ ¼

ðΣmax − ΣÞ=Σmax ¼ 0.2, where θ ≈ 0.33, by collapsing
the probability distribution of avalanche sizes, PðSÞ∼
S−τfðS=ScÞ, with Sc ∼ Ldf . We find df ≈ 0.77 and τ ≈
1.35 in the stress-control case. Again, these values perfectly
agree with Eq. (2). This result holds also for the strain-
control protocol, where we find scale-free avalanches with
the same τ and a similar fractal dimension, df ≈ 0.71.
Length scale.—To gather further evidence for the pres-

ence of a diverging length scale throughout the solid phase,
we study the strain map generated by a single avalanche,
and we consider the M ¼ ðS − 1ÞS=2 distances j ~Ri − ~Rjj

(a) (b)

(c) (d)

FIG. 3 (color online). (a) Collapse of the mean avalanche size
as function of the proximity to failure Δ≡ ½ðΣmax − ΣÞ=Σmax�,
using the value of θðΣÞ extracted from Fig. 2(b). The slope of the
dotted line is −1.1. Here, Σmax depends on the system size. The
inset is the same quantity with no rescaling. (b) Local slope
dΣ=dϵ vs Σmax − Σ, supporting γ ≈ 1, corresponding to dΣ=dϵ ∼
ðΣmax − ΣÞ asymptotically. (c),(d) Collapse of the distribution of
avalanche size at a specific stress value corresponding to Δ ¼ 0.2
for the stress-control case (c) and the strain-control case (d). We
get df ≈ 0.77ð0.71Þ in the stress- (strain-)control case, and
τ ≈ 1.35 in both cases. All numerics are for d ¼ 2.
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between all of the blocks involved in the avalanche. We
compute the distribution of these distances and define PðRÞ
as the average of these distributions among avalanches
occurring at the same stress value in different samples (we
choose to weight each avalanche byM in this average). We
focus on avalanches occurring at a finite distance from
failure, with Δ ≈ 0.3. Assuming homogeneity, we expect
PðRÞ ¼ ð1=ξαÞgðR=ξÞ. In Fig. 4(a), we confirm such a
form, specifically,

PðRÞ ¼ 1

L
g

�
R
L

�
: ð4Þ

We observe a similar scaling form in the strain-control
simulation. These results confirm that ξ ∼ L, as further
supported by the observation that hRi ∼ L (shown in
the inset).
Our results are at odds with the conclusions of

Ref. [10], which report an increasing length scale in a
stress-control simulation of granular media. We now
suggest that their data may in fact be consistent with
our views. In Ref. [10], a length scale is extracted by
considering the fluctuations of the strain field obtained
during some strain interval Δϵ, for different stress values
Σ. This is different a priori from our analysis above,
which considers avalanches individually. To clarify this
point, we perform an analysis closer to theirs, where finite
intervals of strain are considered. We define a pair density
function [34] C2ðRÞ as the probability that two local
plastic events among the M ≈ NΔϵ ones in this interval
are at a distance smaller than R. Figure 4(b) shows C2ðRÞ
for Δ ¼ 0.3 and varying Δϵ’s, as indicated in the legend.
At first sight, one may think that a length scale can be
extracted from C2ðRÞ, but this length is Δϵ dependent. We
find that this dependence, however, can be cured by
removing the effect of the mean strain in our definition
of C2ðRÞ. We define C0

2ðRÞ ¼ C2ðRÞ − C2ðLÞR2=L2,
which is zero if the plastic events are homogeneous in
space. As shown in the inset of Fig. 4(b), the characteristic

length in C0
2ðRÞ does not depend on Δϵ. In Fig. 4(c) we

show a similar analysis as the proximity to failure Δ is
varied. From C2ðRÞ it would appear that a length scale
grows as Δ → 0. However, as shown in the inset, this is an
artifact of this analysis, as C0

2ðRÞ shows a constant length
scale of order L, consistent with our prediction ξ ¼ ∞.
Experimental measurements of the anisotropic part of the
strain field also support that the correlation length is
always large and weakly depends on Σ [9]. Our views
could be further tested by performing a similar analysis in
similar experimental [7–9] and numerical [10] data.
Conclusion.—Reference [20] argues that glassy systems

whose elementary excitations display sufficiently long-
range interactions (including electron glass, mean-field
spin glasses, or spheres at random close packing) must
display criticality for an entire range of fields or shear
stress. This view has not yet been established experimen-
tally. Our work supports that it holds in amorphous solids
and granular materials, where it should be testable. Slowly
sheared granular material experiments have revealed ava-
lanches with power-law statistics, but currently these
studies have been limited to stationary flow [35,36] (which,
in addition, to miss the transient behavior, may lead to
additional complexity for granular materials due to the
emergence of isostaticity [37,38], a property, however,
absent in the transient [39]). Note that for stresses far from
Σmax, a large system may be required to test our views since
one must have hSi ≫ 1 for Eq. (1) to hold. Our predictions
may also apply in disordered crystals, where Σmax, how-
ever, is not well defined, presumably due to work hardening
[40,41]. In Ref. [42], the authors observe numerically scale-
free avalanches with hSi ∼ N0.4 for a range of stresses. In
our view that corresponds to θ ≈ 0.67, a prediction that
could be tested by measuring how the characteristic interval
of stress with no plasticity vanishes with N. Finally, a
central question for the future is what governs the value of
the exponent θ, which affects plasticity but also macro-
scopic rheological properties.

(a) (b) (c)

FIG. 4 (color online). (a) Distribution of avalanche extension PðRÞ for the stress-control protocol at Δ ¼ 0.3. Collapse occur by
rescaling distances with L, supporting the fact that ξ ¼ L. (Inset) Direct measurement of ξ, defined as ξ ∼ hRi. (b) C2ðRÞ at Δ ¼ 0.3 for
different Δϵ’s, as indicated in the legend, suggesting a length scale that depends on Δϵ. (Inset) C0

2ðRÞ for which no such dependence
appears. (c) C2ðRÞ computed for Δϵ ¼ 10−3 and varying Δ as indicated in the legend, suggesting an increasing length scale as Δ → 0.
(Inset) C0

2ðRÞ shows no such effect.
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