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We discuss general Maxwell identities relating a macromolecule’s charge, the forces acting at its surface,
and the osmotic pressure of the solution in which it sits. The identities are closely related to the contact
value relations that hold for certain special geometries, but are more general. In particular, the Maxwell
identities can be applied to any macromolecule geometry, and they hold both within and outside of mean-
field theory. Examples illustrate that combining the identities with approximate treatments of screening can
often return simple, accurate osmotic pressure estimates.
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Introduction.—There are two geometries for which a
closed-form contact value theorem holds relating the total
number of screening ions associated with a macromolecule
—its excess sum—to the density of ions at its surface: the
isolated planar [1] and cylindrical geometries [2]. In the
former case, the contact identity holds in general, while in the
latter the identity holds only in the mean field. These
theorems are quite useful in that they allow for the determi-
nation of a dilute solution’s global osmotic pressure—which
is a function, Eq. (10) below, of the excess sums—through
single-moleculemeasurements of local contact properties. In
this Letter, we introduce a set of thermodynamic Maxwell
identities that also relate a macromolecule’s excess sum to
local properties at its surface. These differential identities can
be used to derive the contact value identities that hold for the
isolated cylindrical and planar geometries, but are more
general. In particular, they can be applied to characterize ion
associations withmacromolecules of any geometry, and they
also always hold, both within and outside of mean-field
theory. When combined with approximate treatments of
screening, they can be used to obtain simple osmotic pressure
estimates for general geometries.
Differential contact identities.—We consider here a

general isolated macroion of total charge Q characterized
by some set of coordinate configuration degrees of freedom
fxig. We write qi ≡Qq̄i for the charge at xi, and suppose
that the macroion sits within a bulk electrolyte containing
salt in excess. We take the ions of species j to have charge
ezj and to be at bulk concentration cj ≡ cc̄j, with c a scale
factor common to all present species. Using standard
arguments—see, e.g., [3] for the derivation of a similar
relation—one can show that the free energy F of a large
volume V surrounding the macroion satisfies

dF ¼
X
i

fhfii · dxi þ hϕðxiÞidqig −
X
j

hNjidμj: ð1Þ

Here, fi is the force acting on coordinate xi, ϕðxiÞ is the
electrostatic potential at coordinate xi, Nj is the number of
ions of species j within V, μj is its associated chemical
potential, and brackets denote a thermal average. The first
term above is associated with mechanical work, the second
with charging the macroion, and the third with varying the
ion concentrations. The fdμjg in Eq. (1) are not linearly
independent as they are linked through the bulk’s Gibbs-
Duhem relation, which at fixed pressure and temperature
reads

P
jcjdμj ¼ 0 [4]. Using this equation to solve for the

change in solvent chemical potential, dμW , and now
assuming that c is sufficiently small that we can write
μj ¼ T log cj, the variation of c at fixed fc̄jg gives

dF ¼
X
i

fhfii · dxi þ hϕðxiÞidqig −
T
c

X
j

hnjidc: ð2Þ

The sum over j in Eq. (2) is now over solute species only,
and nj, the excess of species j, is given by

nj ¼ Nj − cjV −
cj
cW

fNW − cWVg: ð3Þ

Because we assume that c is small, the third bracketed term
above can be neglected. In this case, Eq. (3) shows that the
excess of species j is essentially equal to the number of
molecules of species j near the macroion, Nj, minus the
number that would be in an equivalent volume of the bulk
electrolyte, cjV.
Equating the mixed partials of Eq. (2) returns a very

general set of Maxwell relations that can be quite useful. In
particular, if one of the partials is taken with respect to c, a
differential identity is obtained relating the global excess
sum to a local quantity characterizing the macroion. The
two fundamental identities of this sort are
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∂chϕii ¼ −ðT=cÞ∂qi

X
hnji; ð4Þ

∂chfii ¼ −ðT=cÞ∇xi

X
hnji; ð5Þ

the main results of this Letter. These identities can be
applied to characterize the relationship between the excess
sum and the contact properties of any macromolecule. For
the special case of cylindrical and planar macroions, we
show in an appendix that they can be used to efficiently
derive the contact value theorems. In this sense, Eqs. (4)
and (5) can be considered generalizations of these prior
results.
In previous works, we derived and applied some system-

specific identities related to special cases of Eqs. (4) and
(5): in [3,5–7], we applied a conjugate of the second line
above to analyze single-molecule experimental data. By
considering variations with respect to an applied tension
force—rather than position coordinate, as in Eq. (5)—we
were able to determine the excess sum of various nucleic
acids as a function of their end-to-end extension. In [8], we
found that for a thin line charge macroion sitting in an
arbitrarily complex electrolyte, the symmetries of the
mean-field equations can be exploited to obtain an exact
evaluation of the left side of a special case of Eq. (4). This
allowed us to efficiently derive the universal limiting law
sum rule that holds for thin line charges, a result first
derived in [9] through a much more challenging analysis of
the Poisson-Boltzmann equation. These prior works dem-
onstrated the significant potential utility of the Maxwell
relation approach, as applied to some special cases. Below,
we illustrate more general utility, showing that Eqs. (4) and
(5) can be applied whenever approximate evaluations of the
contact properties are available, e.g., by means of simu-
lation, numerical estimate, or series expansion. We focus in
some detail on the linear response approximation, which
provides some insight into general properties of screened
systems.
General linear response forms.—For weakly charged

macroions, screening is well modeled as linear, giving
ϕi ¼ Qϕ̄i, with ϕ̄i independent of Q. In this case, if we
vary the net charge Q of the macroion at fixed fq̄ig (i.e.,
uniformly scale the macroion’s charge), Eq. (4) gives

∂Q

X
hnji ¼ −

c
T
Q∂c

X
i

q̄iϕ̄i ≡ −
c
T
Q∂cϕ̄S: ð6Þ

A similar expression can also be obtained for highly
charged macroions if we apply counterion condensation
theory [10–12]. This is an approximate treatment of
screening that supposes linear screening for all Q up to
some critical value Q�. However, for bare charge Q > Q�,
counterions from the bulk are supposed to condense onto
the macroion’s surface, renormalizing the charge of the
macroion back down to its critical value Q�. The critical
value Q� can be estimated by setting the bulk chemical

potential equal to the electrostatic energy gained by a
counterion when it condenses onto the surface: it does not
matter where on the surface, since the condensed, mobile
counterions work to establish an effectively constant sur-
face potential boundary condition [10]—Fig. 1 provides an
example. Equating the two energies gives

Q�ϕ̄Sez� ≈ T log c�; ð7Þ

where c� and ez� are the bulk concentration and charge of
the condensing species. Combining Eqs. (7) and (4) gives

∂Q

X
hnji ¼ −

c
T
∂cðQ�ϕ̄SÞ ¼ −

1

ez�
; ð8Þ

the high-charge analog of Eq. (6).
Integrating Eqs. (6) and (8) with respect toQ provides us

with the following approximate expression for the excess
sum associated with a positively charged macroion:

X
hnji ¼

�− cQ2

2T ∂cϕ̄S; for Q < Q�

− cQ�2
2T ∂cϕ̄S þ Q−Q�

jez�j ; for Q ≥ Q� : ð9Þ

This formula is very general and often accurate. Indeed,
Eq. (9) is exact for the special case of thin line charges in
the mean-field limit [8,9]. For other geometries, this is not
precisely the case, but Eq. (9) can always be used to provide
reasonable estimates to the excess sum. This, in turn, allows
for the osmotic pressure Π of a volume V of dilute solution
to be estimated, via the expression [13]
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FIG. 1 (color online). Many-body simulation results: Potential
ϕ as a function of polar angle θ at the surface of a uniformly
charged ellipsoid with major radius 20.8 nm, minor radius
6.9 nm, source charge Q ¼ 1000e, and screened by its counter-
ions—simulated as in [10]. The condensed ions are mobile.
Consequently, the total potential ϕtotal at the surface, which is the
sum of that from the ions and the source charge, is nearly
uniform.
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ΠV
T

¼ NM þ
X
j

ðNj − NMnjÞ: ð10Þ

Here, Nj is the number of molecules of species j in the
volume—with NM the macroion number—and nj is the
excess of species j associated with each macroion. This
result holds because a macroion and its screening cloud
translate as a single complex.
While the Q dependence of the estimate is explicit in

Eq. (9), evaluation of its c dependence requires an estimate
of ∂cϕ̄S. This factor can depend sensitively on macroion
geometry. However, it is not particularly sensitive to the
makeup of the electrolyte: within the linear screening
approximation, the surface potential ϕS depends on the
makeup of the electrolyte only in so far as the screening
length does. This means that the sum is a function of the
screening length only, and any two electrolytes having the
same screening length will return a common excess sum.
This implies that knowledge of the excess sum for one
electrolyte composition, at varying salt concentrations, is
sufficient to estimate the sum for any other electrolyte
composition. We consider some explicit examples below.
Spheres, planes, and cylinders.—Linear screening is

governed by the Debye-Hückel equation [14]

∇2ϕ ¼ κ2ϕ − 4πρS: ð11Þ

Here, κ2 ≡ 4πlB
P

jcjzj, κ
−1 is the screening length, ρS is

some source charge, and lB ¼ ðe2=ϵTÞ is the Bjerrum
length. Three macroion geometries where closed-form
solutions to this equation can be obtained are given by
the uniformly charged spherical (radius a), planar (area
A ≫ κ−2), and cylindrical (radius a, length L ≫ κ−1)
macroion geometries [15]. Assuming electrolyte-excluding
macroion interiors, solving Eq. (11) for these geometries
returns surface potential estimates given by

ϕðsurfaceÞ ¼

8>>><
>>>:

Q
a

1
1þκa ; sphere

4πσ
κ ; plane

2λ
κa

K0ðκaÞ
K1ðκaÞ ; cylinder

: ð12Þ

Here, σ ≡Q=A, λ≡Q=L, K0 and K1 are modified Bessel
functions, and we assume the electrolyte sits only in the
upper half-space in the planar case. Combining Eqs. (12)
and (9) returns the following excess sum estimates:

X
hnji ¼

8>>><
>>>:

Q2

4T
κ

ð1þκaÞ2 ; sphere

σ2πA
T

1
κ ; plane

λ2L
2T

h
1 −

�
K0ðκaÞ
K1ðκaÞ

�
2
i
; cylinder

: ð13Þ

The expressions in Eq. (13) are valid in the small charge
limit. For Q > Q�, the sum is always linear in Q, as
in Eq. (9).
Although the Q dependence is similar in each line of

Eq. (13), the κ dependence is not: the planar and cylindrical
estimates are both monotonically decreasing functions of κ,
but the spherical geometry has an excess sum maximum at
κ ¼ a−1. This κ value determines the Q-independent, finite
salt-concentration scale where inclusion of spherical mac-
roions will most dramatically reduce the osmotic pressure,
Eq. (10), of a solution. A plot of the spherical estimate,
Eq. (13), is shown in Fig. 2(a). This is for a sphere of radius
of a ¼ 2.5 nm and chargeQ ¼ 20e. Also shown in the plot
are excess sum estimates obtained from a full, many-body
(non-mean-field) simulation of a spherical macroion of the
same size and charge sitting within a monovalent electro-
lyte [16]. The two generally agree within error, and both are
nonmonotonic. We note that this effect might be observed
experimentally, perhaps using the scattering approach
discussed in [17,18]: for 2–3 nm globular proteins, the
peak should sit at about 10 mM monovalent salt.
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FIG. 2 (color online). (a) Debye-Hückel (black curve) and simulation (red points) excess sum estimates for a sphere of charge
Q ¼ 20e and radius a ¼ 2.5 nm at various monovalent salt concentrations. (b) Poisson-Boltzmann (PB, black) and Debye-Hückel (DH,
red dashed) excess sum estimates as a function of planar surface charge σ ðe=½ nm2�Þ, 1 mmmonovalent salt. A crossover is apparent at a
critical value of σ: below this value, the excess sum is quadratic in the charge, above it is linear.
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Tests of the cylindrical expression given in Eq. (13) were
carried out in [8], where the estimate was found to agree
well with simulation results (there, we derived this expres-
sion using a similar, but less general method that cannot be
extended beyond linear response). We can also conven-
iently test the planar expression in Eq. (13), making use of
the known solution to the full, nonlinear Poisson-
Boltzmann equation in monovalent salt [19]. This is

ϕðzÞ ¼ −
2

elB
log

�
1þ γe−κz

1 − γe−κz

�
; ð14Þ

where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκμÞ2 þ 1

p
− κμ, μ≡ ðe=2πlBjσjÞ, and z is the

height above the plane. Combining Eqs. (14) and (4) gives

nþ þ n− ¼ Qγ

e
: ð15Þ

We plot this expression alongside Eq. (13) in Fig. 2(b). The
two agree well except very near the crossover at Q�. In the
Debye-Hückel plot, the crossover point was estimated
using Eq. (7). We have found that by varying Q� slightly
around this approximation—which is only intended to
provide an order of magnitude estimate—even better
agreement can be obtained between the two.
Discussion.—In this article, we have presented the

general Maxwell identities, Eqs. (4) and (5), that relate a
macromolecule’s global excess sum to local properties at its
surface. These results can be of high utility. For example, in
[8] we found that a special case of Eq. (4) can be used to
obtain the exact mean-field excess sum associated with a
line charge—despite the fact that general analytic expres-
sions for the potential and ion density profile have not yet
been found for this system. The generalizations that we
have presented in this work extend the applicability of the
Maxwell identity approach to all geometries. As applied to
the cylindrical and planar cases, we have shown in an
appendix that the identities imply the contact value theo-
rems [1,2]. As a more general application, we have shown
that combining the Maxwell identities with counterion
condensation theory [10–12] provides a straightforward
method for obtaining excess estimates—with Eq. (9) the
formal, general result and Eq. (13) giving some explicit
examples. Analytic evaluations of Eq. (9) are also possible
for any geometry where the Green’s function is known:
convoluting this over a source distribution, one can quickly
evaluate a molecule’s surface potential. It would be
interesting to apply this approach to study how the excess
sum associated with a polymer depends upon its confor-
mation—perhaps making use of a flexible line charge-
Yukawa potential model for the polymer. Another exciting
case that might be considered is the dielectric ellipsoid.
Making use of the series expansion for this geometry’s
Green’s function [20], one could quickly explore how a
globular macroion’s excess sum changes with deformations
away from the spherical limit, as well as with its degree of

source charge heterogeneity, or “patchiness.” More gen-
erally, the results, Eqs. (4) and (5), can also be combined
with numerical solutions to the Poisson-Boltzmann equa-
tion, non-mean-field simulation results, or any other source
of contact measurements.
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APPENDIX: CONTACT VALUE IDENTITIES

Here, we present efficient derivations of the planar and
cylindrical contact identities using Eqs. (4) and (5). Similar
identities hold for other geometries, but cannot be written in
closed form without knowledge of the surface potential.
Planes: Consider an isolated planar charge distribution
sitting at z ¼ z0, with an electrolyte in the upper half-space
z > z0. For this geometry, at fixed c, Eq. (2) reads

dF ¼ ϕz0dσ þ
�
Pext þ

X
i

ciðz0Þ
lB

− 2πσ2
�
dz0: ðA1Þ

The second mechanical work term above—associated with
moving the location of the plate—takes into account the
external pressure force, the local osmotic pressure force at
the planar surface, and the attractive electrostatic interac-
tion of the plane with the electrolyte. We assume there are
no other interactions between the plane and the solution.
From Eq. (A1), we have

∂z0ϕz0 ¼ ∂σ

�
1

lB

X
i

ciðz0Þ − 2πσ2
�
: ðA2Þ

The left side here is zero; ϕz0 is independent of z0 since we
assume a semi-infinite electrolyte. Integration gives

X
i

ciðz0Þ − 2πlBσ2 ¼
X
i

ci; ðA3Þ

the isolated planar contact identity [1]. Cylinders: The
cylindrical contact identity holds only in the mean-field
limit, in which the potential takes the following scaling
form, which follows directly from the homogeneity of the
Poisson-Boltzmann equation [8]:

ϕ≡ 1

elB
yðκr; κa; λlB; fzj; c̄jgÞ: ðA4Þ

Letting ρi ≡ ni=L, Eq. (2) reads
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dF ¼ ϕadλ −
1

clB

X
i

ρidc

þ 2πa

�
Pext þ

1

lB

X
i

ciðaÞ −
λ2

2πa2

	
da: ðA5Þ

The mechanical work term is now associated with adjusting
the cylinder’s radius. This contains an external pressure
term, a local pressure term, and a cylindrical self-repulsion
term. Consider now the two relations

a∂aϕa ¼ 2πa2∂λ

�
1

lB

X
i

ciðaÞ −
λ2

2πa2

�
;

∂cϕa ¼
1

2c
fr∂rϕja þ a∂aϕjrga ¼ −∂λ

X
i

ρi
clB

: ðA6Þ

The first equality in the second line follows from Eq. (A4).
Further, the left side of the first line is evaluated with r set to
a, and so equates to the bracketed term in the second.
Combining the two equations gives

∂λ

�X
i

ciðaÞ −
lBλ2

2πa2
þ 1

πa2
X
i

ρi

�
¼ 0; ðA7Þ

or

X
i

ciðaÞ −
lBλ2

2πa2
þ 1

πa2
X
i

ρi ¼
X
i

ci: ðA8Þ

This is the cylindrical contact identity, as first derived by
Anderson and Record through the use of an asymptotic
analysis of the Poisson-Boltzmann equation [2].
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