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Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO,

Yuesheng Li,1 Gang Chen,2’3’* Wei Tong,4 Li Pi,4 Juanjuan Liu,1 Zhaorong Yang,5

Xiaoqun Wang,"® and Qingming Zhang

1,61

1Departmem‘ of Physics, Renmin University of China, Beijing 100872, People’s Republic of China
*State Key Laboratory of Surface Physics, Center for Field Theory and Particle Physics,
Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
3Collaborative Innovation Center of Advanced Microstructures, Fudan University,
Shanghai 200433, People’s Republic of China
*High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, People’s Republic of China
5Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences,
Hefei 230031, People’s Republic of China
6Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
and Collaborative Innovative Center for Advanced Microstructures,
Nanjing 210093, People’s Republic of China
(Received 19 August 2015; published 16 October 2015)

YbMgGaO,, a structurally perfect two-dimensional triangular lattice with an odd number of electrons
per unit cell and spin-orbit entangled effective spin-1/2 local moments for the Yb3* ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental characteri-
zation of single-crystal YbMgGaO, samples. Because of the spin-orbit entanglement, the interaction
between the neighboring Yb3* moments depends on the bond orientations and is highly anisotropic in the
spin space. We carry out thermodynamic and the electron spin resonance measurements to confirm the
anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a
first step towards the theoretical understanding of the possible quantum spin liquid ground state in this
system and sheds new light on the search for quantum spin liquids in strong spin-orbit coupled insulators.
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Introduction.—Recent  theoretical advances have
extended the Hastings-Oshikawa-Lieb-Schultz-Mattis
theorem to the spin-orbit coupled insulators [1-4]. It is
shown that as long as the time reversal symmetry is
preserved, the ground state of a spin-orbit coupled insulator
with an odd number of electrons per unit cell must be exotic
[1]. This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum spin
liquid (QSL). QSLs, as used here, are new phases of matter
that are characterized by properties such as quantum
number fractionalization, intrinsic topological order, and
gapless excitations without symmetry breaking [5,6].
Among the existing QSL candidate materials [7-33], the
majority have a relatively weak spin-orbit coupling (SOC),
which only slightly modifies the usual SU(2) invariant
Heisenberg interaction by introducing weak anisotropic
spin interactions such as the Dzyaloshinskii-Moriya inter-
action [34-36]. It is likely that the QSL physics in many of
these systems mainly originates from the Heisenberg part
of the Hamiltonian rather than from the anisotropic
interactions due to the weak SOC. The exceptions are
the hyperkagome NayIr;Og and the pyrochlore quantum
spin ice materials where the non-Heisenberg spin inter-
action due to the strong SOC plays a crucial role in
determining the ground state properties [16,17,37-48],
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though both systems contain an even number of electrons
per unit cell. Therefore, it is desirable to have a QSL
candidate system in the spin-orbit coupled insulator that
contains an odd number of electrons per unit cell, where the
strong SOC leads to a non-Heisenberg spin Hamiltonian
[37,38,40,48-52].

In this Letter, we propose a possible experimental
realization of the QSL with strong SOC and an odd number
of electrons per unit cell in YbMgGaO,, where the Yb**
ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has a
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FIG. 1 (color online). The YbMgGaO, lattice structure (a) and
the triangular lattice in the ab plane (b) formed by the Yb3* ions.
The inset defines the coordinate system for the spin components.
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Curie-Weiss temperature OF5yd" = —4 K but does not
order magnetically down to 60 mK [53]. To understand
the nature of the obviously disordered ground state
observed in YbMgGaOQ;,, it is necessary to have a quanti-
tative understanding of the local moments and microscopic
Hamiltoninan. We here confirm the effective spin-1/2
nature of the Yb** local moments at low temperatures
from the heat capacity and the magnetic entropy measure-
ments in high-quality single-crystal samples. Because the
Yb3t ion contains an odd number of electrons, the effective
spin is described by a Kramers doublet. Based on this fact,
we theoretically derive the symmetry allowed spin
Hamiltonian that is non-Heisenberg-like and involves four
distinct spin interaction terms because of the strong SOC.
Combining the spin susceptibility results along different
crystallographic directions and the electron spin resonance
(ESR) measurements in single-crystal samples, we quanti-
tatively confirm the anisotropic form of the spin interaction.
We argue that the QSL physics in YbMgGaO, may
originate from the anisotropic spin interaction. To our
knowledge, YbMgGaO, is probably the first strong spin-
orbit coupled QSL candidate system that contains an odd
number of electrons per unit cell with effective spin-1/2
local moments.

Experimental Technique.—High-quality single crystals
(~1 cm) of YbMgGaQ,, as well as the nonmagnetic iso-
structural material LuMgGaO, [54], are synthesized by the
floating zone technique. X-ray diffraction is performed on
the cutting single crystals to confirm the crystallization, the
crystallographic orientation, and the absence of the impu-
rity phase, and for the single-crystal structure refinements
[55]. The high quality of the crystallization was confirmed
by the narrow x-ray diffraction rocking curves with A26 ~
0.06° and 0.04° on ab planes for the YbMgGaO, and
LuMgGaO, crystals, respectively. Magnetization (~60 mg
of YbMgGaO, single crystals) and heat capacity measure-
ments (10-20 mg of YbMgGaO, and LuMgGaO, single
crystals) were performed using a Quantum Design physical
property measurement system along and perpendicular to
the ¢ axis at 1.8—400 K under 0-14 T. The magnetic
susceptibilities of the single crystals agree with those
of the powder samples, /3 + 2y, /3 = ¥powder- The ESR
measurements (~60 mg of YbMgGaO, single crystals) at
1.8-50 K along different crystallographic orienta-
tions were performed using a Bruker EMX plus 10/12
continuous wave spectrometer at X-band frequencies
(f ~9.39 GHz); the spectrometer was equipped with a
continuous He gas-flow cryostat.

Kramers doublet and exchange Hamiltonian.—The
Yb** ion in YbMgGaO, has an electron configuration
413, and from Hund’s rules the orbital angular momentum
(L = 3) and the spin (s = 1/2) are entangled, leading to a
total angular momentum J = 7/2. Under the trigonal
crystal electric field, the eightfold degenerate J = 7/2
states are splitted into four Kramers doublets [38—41,48].

By fitting the heat capacity results with an activated
behavior, we find the local ground state doublet is well
separated from the first excited doublet by an energy gap
A ~ 420 K. This indicates that only the local ground state
doublet is active at T < A. Moreover, the magnetic entropy
reaches a plateau at RIn2 per mol Yb3* around 40 K,
which is consistent with the thermalization of the twofold
degenerate ground state doublet [53,54].

As it is analogous to the local moments in the pyrochlore
ice systems [27], one can introduce an effective spin-1/2
degree of freedom S; that acts on the local ground state
doublet. The low-temperature magnetic properties are fully
captured by these effective spins. Because the 4 f electron is
very localized spatially [28], it is sufficient to keep only the
nearest-neighbor interactions in the spin Hamiltonian [56].
Via a standard symmetry analysis, we find that the generic
spin Hamiltonian that is invariant under the R3m space
group symmetry of YbMgGaO, is given by

H = ZJ iS5+ J o (STST + S7ST)
+ J:i::l:(yijSi Sf +75:5757)

i,
2

(iS85 —vySi S5+ (ie))l. (1)

where S = §7 +iS7, and the phase factor y;; = 1, e27/3,
e~>7/3 for the bond ij along the a,, a,, a; direction (see
Fig. 1), respectively. This generic Hamiltonian includes all
possible microscopic processes that contribute to the
nearest-neighbor spin interaction. The highly anisotropic
spin interaction in H is a direct consequence of the spin-
orbit entanglement in the local ground state doublet.
Moreover, the antisymmetric Dzyaloshinskii-Moriya inter-
action is prohibited in the Hamiltonian because of the
inversion symmetry.

Magnetization and magnetic susceptibility.—In order
to quantitatively determine the exchange couplings, we
first perform the magnetization measurements for the
YbMgGaO, single crystals down to 1.8 K under an external
magnetic field (from O to 14 T) parallel and perpendicular
to the ¢ axis (see Fig. 1). The Zeeman coupling to the
external field is also constrained by the lattice symmetry
and is given by [57]

Hz = —MOHBZ[QL(thf +hyS;) + gy Sil. (2)

As shown in Fig. 2, the magnetization processes are
obtained for both field directions at 1.9 K. When the field
is above 12 T, both magnetizations saturate and become
linearly dependent on the field. The slope of the M-H curve
is temperature independent and is understood as the Van
Vleck susceptibility (¥ = 0.118(2) cm’/mol-Yb*,

= 0.0479(8) cm? /mol Yb3+) that arises from the
fleld induced electronic transitions [58]. After subtracting
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FIG. 2 (color online). (a),(b) The magnetization of the
YbMgGaO, single crystals measured at 10, 6, 3, and 1.9 K.
The dashed lines are linear fits of the experimental results for
fields above 12 T at 1.9 K. The solid curves are the corresponding
magnetization calculated by the molecular field approximation.
(c),(d) The inverse spin susceptibilites (after subtracting the Van
Vleck paramagnetism) fitted by the Curie-Weiss law (in dashed
lines) for the YbMgGaO, single crystals.

the Van Vleck paramagnetic contribution, we obtain
the saturated magnetic moments (g ug/2 and g, ug/2),
from which we extract the g factors g = 3.721(6),
g1 = 3.060(4) [54].

We apply a small external field (0.01 T) to measure the
spin susceptibilities parallel and perpendicular to the ¢ axis
as a function of temperature. Athigh temperatures (7 2 8 K)
both susceptibilities (after the substraction of the Van Vleck
paramagnetism) are well fitted by the Curie-Weiss law (see
Fig. 2). From the spin Hamiltonian, one readily obtains the
Curie-Weiss temperatures @P:W = =3J../2 Oty = -3J1)
for the field parallel (perpendicular) to the ¢ axis. We then use
the above relations to find J,, and J.. Alternatively, we
apply the high-temperature molecular field approximation to
fit the field dependence of the magnetizations. As shown
in Fig. 2, the molecular field result agrees with the experi-
ments very well at 10 K. These two approaches together
yield J,. = 0.98(8) K and /. = 0.90(8) K.

ESR.—The remaining two coupling constants J,. and
J,. that contribute to the anisotropic spin interaction
completely break the U(1) spin rotation but keep time
reversal symmetry intact. They cannot be well resolved by
the above thermodynamic measurements. To precisely
determine them, we use exhaustive ESR measurements
and analyze the ESR linewidths. It is well known that the
ESR linewidth is a powerful and direct measure of the
anisotropic spin interactions [59-64]. We perform the ESR
measurements from 1.8 to 50 K along different crystallo-
graphic orientations, where the wide ESR signals, as broad
as ugAH(0) ~ 0.4 T, were observed (see Figs. 3 and 4 and
the raw ESR signals [54]).

Here, we discuss various sources that broaden
the ESR linewidth. The first one is the hyperfine inter-
actions that contribute to the ESR linewidth with
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FIG. 3 (color online). The temperature dependence of the ESR
linewidths (a) parallel and (b) perpendicular to the ¢ axis. The
dashed lines are the corresponding constant fits to the ESR
linewidth data at T > 6 K. (c) The deviation R, of the exper-
imental ESR linewidths from the theoretical ones for
YbMgGaO,. The dashed rectangle gives the optimal parameters
[Jie| =0.155(9) K and |J .| = 0.04(10) K.

poAH, ~ |Ay*/(gup|Jo|) ~2 mT [63], where the hyper-
fine coupling |A;| is about 2 GHz for Yb** [65], and J is
the isotropic Heisenberg coupling defined as J, = (4J. +
J..)/3~15(1) K in Eq. (3). The next-nearest-neighbor
magnetic dipole-dipole interactions also broaden the ESR
signal with o AH, ~ |E4|*/ (gug|Jo|) ~ 0.3 mT [63]. Here,
we have made a maximal estimate of the next-nearest-
neighbor dipole-dipole interaction |E;| as pog*u3/
[47(v/3a)’], where a is the lattice constant. All the
Yb** ions share the same g tensor; the Zeeman interaction
is homogeneous and thus does not contribute to the ESR
linewidth [63]. All of the above contributions together give
an ESR linewidth that is 2 orders of magnitude smaller than
the observed value. To account for such a large ESR
linewidth, which is ~0.4 T, the only remaining origin lies
in the anisotropy of the nearest-neighbor spin interaction.

We now decompose the spin Hamiltonian in Eq. (1) into
isostropic and anisotropic parts

H:JOZSi'Sj+H/’ (3)
(i.j)

where J, was previously introduced, T';; is a traceless

coupling matrix, and H' = 3" , ST, S% is the aniso-

tropic part of the spin interaction. With the Zeeman term in
Eq. (2), the ESR linewidth is obtained as

(27 (M%)%’ @
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FIG. 4 (color online). (a) Angular dependence of the ESR
linewidth. The dashed curve is the calculated ESR line-
width. (b) The magnetic susceptibilities of the YbMgGaO,
single crystal after subtracting the Van Vleck paramagnetism.
The solid curves are the calculated susceptibilities using the high-
temperature series expansion. The dashed curves are the Curie-
Weiss susceptibilities.

where 6 is the angle between the external field
and the ¢ axis, g(0)=/(gfcos’0+gisin’0)'/%, M, =
((H',M*|[M~,H'])/{M*TM~) is the second moment, and
My = {H,[H,M|[H,[H',M~]])/(M*"M~) is the fourth
moment [62]. Here, M* = >, SF.

The ESR signal of the YbMgGaO, single crystal can be
well fitted by the first-derivative Lorentzian line shape
with a small contribution from dispersion as described
by Ref. [64]. Both uyAH(T) and uyAH (T) show a
gradual broadening [61] with increasing temperature for
kgT < 5J,, and reach almost the temperature-independent
maxima at yoAH| =0.4352(9) T and uyAH | =0.4152(7) T
for kgT > 5J (see Fig. 3). We fit these high-temperature
ESR linewidths according to the theoretical results. In
Fig. 3, we plot the deviation of the experimental result from
the theoretical one

1[|AH| - AH‘ﬁ‘j11
R,=~

AH, — AHS
AH |

= | ©

as a function of /., and J,, . The optimal fit is obtained by
setting |Jo| = 0.155(3) K and |J_.| = 0.04(8) K, the
signs of which cannot be fixed by the fit.

As an unbiased check of the fitted results, we use the
optimal couplings to calculate the angle dependence of the
ESR linewidth pyAH (), where 6 is the angle between
the external field and the ¢ axis. As shown in Fig. 4, the
experimental curve agrees with the theoretical result very
well. Moreover, we apply the high-temperature series
expansions to compute the spin susceptibilities per Yb**
ion up to O(T7?)

p _ Hogikg _3@1_3@,A@i+1é+_wﬁz
W 4k, T 2kpT 2KET? 8k312)"
(6)
_ ﬂogiﬂ% (1 _ 3J_i 7131: _ 2J§::|: _ 5"?1
4kpT kgT = k3T* k3T? 16k3T?
_ J%z _ J:thz ) (7)
8K3T?  4K3T?

As we depict in Fig. 4, the high-temperature expansion
shows a better fit with the experimental results at lower
temperatures than the simple Curie-Weiss laws.

Discussion.—In the previous powder sample measure-
ments, the magnetic heat capacity of YbMgGaO, behaves
as C, « T (y ~ 2/3) from about 1 K down to 0.06 K [66],
suggesting the system is probably in a gapless QSL phase
[53]. The residual magnetic entropy of the system at 0.06 K
is less than 0.6% of the total magnetic entropy [53]. This is
a strong indication that we are indeed accessing the ground
state property. As far as we are aware, this is the first clear
observation of C, « T*3 in QSL candidate systems. In
fact, this behavior is compatible with what one may expect
for the U(1) QSL with a spinon Fermi surface in two
dimensions [67-69], a state previously proposed for the
organics k-(ET),Cu,(CN); and EtMe;Sb[Pd(dmit),],
[67-69]. Although alternative proposals also exist [70],
the QSL physics in the organics is believed to originate
from the strong charge fluctuation of the weak Mott regime
that induces a sizable ring exchange and thus destabilizes
the 120° magnetic order for a triangular system [67—69]. In
contrast, the physical mechanism to realize a possible QSL
in YbMgGaO, should be rather different. The f electrons
of YbMgGaOQ, are very localized and are in the strong Mott
regime. The charge fluctuation is very weak and the ring
exchange process should be negligible. On the other hand,
the anisotropic J.4 and J,, spin interaction is a new
ingredient brought by the spin-orbit entanglement of the Yb
f electrons and is expected to be the physical origin of the
QSL physics. This is because in the absence of the
anisotropic J. and J,. spin interaction the antiferromag-
netic XXZ model would produce a conventional magnetic
order [71]. It is the anisotropic J. ;. and J_. spin interaction
that competes with the XXZ model and may melt the
magnetic order in a certain parameter regime [72]. Through
the current single-crystal measurements, we expect
YbMgGaO, to be a spin-orbit coupled QSL in which
the anisotropic spin interaction is the driving force.

To summarize, we have characterized the magnetic
properties of large YbMgGaO, single crystals that are
grown for the first time. The crystal structure and effective
spin-1/2 Hamiltonian of YbMgGaO, are precisely deter-
mined by single-crystal x-ray diffraction, thermodynamic
measurements, and ESR linewidths on the orientated single
crystals. We find that the anisotropic spin exchange
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interaction on the Yb triangular lattice significantly broad-
ens the ESR linewidths. We argue that the anisotropic spin
interaction plays an important role to stabilize the possible
QSL ground state in YbMgGaO,.
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