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The geometry of electronic bands in a solid can drastically alter single-particle charge and spin transport.
We show here that collective optical excitations arising from Coulomb interactions also exhibit unique
signatures of Berry curvature and quantum geometric tensor. A nonzero Berry curvature mixes and lifts the
degeneracy of l ≠ 0 states, leading to a time-reversal-symmetric analog of the orbital Zeeman effect. The
quantum geometric tensor, on the other hand, leads to l-dependent shifts of exciton states that is analogous
to the Lamb shift. Our results provide an explanation for the nonhydrogenic exciton spectrum recently
calculated for transition-metal dichalcogenides. Numerically, we find a Berry curvature induced splitting of
∼10 meV between the 2px � i2py states of WSe2.
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Introduction.—An exciton, comprised of a bound elec-
tron-hole pair, is an elementary optical excitation of a
semiconductor. In most semiconductors, a large dielectric
constant and small effective masses of charge carriers result
in a weakly bound exciton with a Bohr radius much larger
than the lattice constant. Such excitons are termed as
Wannier-Mott excitons and play a central role in under-
standing the optical response of a number of condensed-
matter systems [1,2]. Although the charge carriers in a
semiconductor are described by Bloch waves, excitonic
spectra of most semiconductors resemble that of a hydro-
gen atom consisting of a Rydberg series [3]. At a first
glance, this is surprising since the wave functions of
electrons and holes in a solid obey crystal symmetry.
For example, discrete translational symmetry in a crystal
implies that single-particle band dispersions of electrons
and holes are periodic in crystal momentum k, necessarily
making their kinetic energy nonparabolic. Nevertheless, in
a semiconductor with a direct band gap at the Γ point
(k ¼ 0) and large Bohr radius such that exciton is made
from k states close to band minima, full symmetry of
vacuum is restored, and a hydrogenic spectrum for excitons
is obtained.
It was recently reported that in monolayers of semi-

conducting transition-metal dichalcogenides (TMDs) such
as MoS2 and WS2, excitonic spectra deviates strongly from
the hydrogenic Rydberg series [4–7]. In particular, states
with identical principal quantum numbers, such as 2s and
2p, are not degenerate [8–10]. Moreover, the degeneracy of
2p states was also found to be lifted in tight-binding
calculations [11]. These exciting predictions were attrib-
uted to nonlocal dielectric screening in TMDs where the
exciton Bohr radius of the 1s exciton is comparable to the
monolayer thickness [12]. In fact, as a consequence of
the tightly bound nature of Wannier-Mott excitons in this
material system, the exciton comprises electron-hole states

which are spread over a large momentum range where a
parabolic description of the dispersion is not valid. Since
TMD excitons are composed of electron-hole states around
�K points where Berry curvature is finite, it is natural to
ask if Bloch-band geometry can alter the excitonic spec-
trum. While the role of Berry curvature in determining
transport properties of noninteracting Bloch electrons is
well established [13,14], its role in modifying Coulomb
attraction leading to bound-state formation has not been
explicitly analyzed.
In this Letter, we analyze the excitonic signatures of the

two geometric invariants of Bloch bands—Berry curvature
and a quantum geometric tensor (QGT). We show that the
Berry curvature, acting as a momentum-space magnetic
field [15] is responsible for a finite splitting of the 2px �
i2py states. Very simply, in two dimensions, an out-of-
plane Berry curvature is associated with circulating single-
particle electron and hole states. Thus, when l ≠ 0 exciton
states are formed, states with a sense of rotation consistent
with the direction of Berry curvature will have lower energy
as compared to counterrotating states, thereby causing a
splitting between the two. The QGT, on the other hand,
contributes to the 2s-2p splitting, which is similar to the
Lamb shift. Our findings apply to Wannier-Mott excitons in
general, and are particularly relevant for TMD excitons
where optical spectroscopy can directly probe the above-
mentioned signatures of the Bloch-band geometry.
Exciton problem in momentum space.—The exciton

motion can be decomposed into the relative motion of
electron and hole giving rise to hydrogenlike bound states,
and the center-of-mass momentum (Kc:m:) resulting in an
excitonic dispersion periodic in a reciprocal lattice vector.
As light emission and absorption takes places around
Kc:m: ¼ 0 due to the negligible momentum of photons,
in the following we will only consider excitons with zero
center-of-mass momentum. Without loss of generality, we

PRL 115, 166802 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 OCTOBER 2015

0031-9007=15=115(16)=166802(5) 166802-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.166802
http://dx.doi.org/10.1103/PhysRevLett.115.166802
http://dx.doi.org/10.1103/PhysRevLett.115.166802
http://dx.doi.org/10.1103/PhysRevLett.115.166802


restrict ourselves to two-dimensional excitons for the rest of
the discussion. The exciton wave function can be expressed
as

P
kAνðkÞc†c;kcv;kj0i ¼

P
kAνðkÞjki, with cc (cv) being

the annihilation operator for an electron in the conduction
(valence) band, and j0i being the semiconductor vacuum
with no excitations. The AνðkÞ amplitudes satisfy the
eigenvalue equation

P
k0 hkjHþ Vjk0iAνðk0Þ ¼ EAνðkÞ,

where H ¼ P
kE

v
kc

†
v;kcv;k þP

kE
c
kc

†
c;kcc;k is the single-

particle Hamiltonian of the two-band semiconductor,
and V ¼ R

d2rd2r0Ψ†ðrÞΨ†ðr0Þðe2=εjr − r0jÞΨðrÞΨðr0Þ is
the Coulomb interaction. Field operators are defined as
ΨðrÞ ¼ ð1= ffiffiffi

S
p ÞPn¼v;c

P
k un;kðrÞeik·rcn;k, where un;kðrÞ

are the Bloch functions of the band with index n ¼ c; v,
and S is the quantization area.
The matrix elements are given by hkjHjk0i ¼

δk;k0 ðEc
k − Ev

kÞ, and hkjVjk0i¼−ðe2=S2ÞR d2rd2r0u�c;k
ðrÞuc;k0 ðrÞðeiðk0−kÞ·ðr−r0Þ=εjr−r0jÞu�v;k0 ðr0Þuv;kðr0Þ¼−ð1=SÞ
ð2πe2=εÞð1=jk−k0jÞhuc;kjuc;k0 ihuv;k0 juv;ki, which is the
direct part of the Coulomb interaction. The long-range
part of the exchange interaction of V vanishes for excitons
with Kc:m: ¼ 0. We neglect the short-range part of the
exchange interaction since its magnitude is much smaller
than the direct terms that we analyze. The eigenvalue
equation for the exciton then becomes

ðΔk − EνÞAνðkÞ −
1

S

X
k0

2πe2

εjk − k0j s
c
k;k0svk0;kAνðk0Þ ¼ 0;

ð1Þ

where the index ν ¼ 1s, 2s, 2p, etc., in analogy to the
hydrogenic orbitals, Δk ¼ Ec

k − Ev
k, ε is the nonlocal

(screened) dielectric constant, and Bloch overlaps
snk;k0 ¼ hun;kjun;k0 i. When the Bloch overlaps are unity,
the dispersion Δk is parabolic, and the dielectric constant is
local, we recover the two-dimensional (2D) hydrogen atom
as the solution. It is then clear that the nonhydrogenic
behavior of the exciton arises from the breakdown of the
above-mentioned assumptions. As the role of nonparabo-
licity and the nonlocal dielectric constant is well under-
stood, in the following we focus on the effect of Bloch
overlaps leading to a nonhydrogenic exciton spectra.
Bloch part: General arguments.—Equation (1) shows

that Bloch overlaps snk;k0 enforce the symmetry of the
crystal on Coulomb attraction between the electron-hole
pair. The radial symmetry of hydrogen atom is lowered
when snk;k0 deviates significantly from unity, thereby
necessarily making the excitonic spectrum nonhydrogenic.
Note that Bloch overlaps as defined above are gauge
dependent unlike the eigenenergies Eν. They need not
change with band dispersion but depend on how the Bloch
functions are arranged in k space or the geometry of Bloch
bands un;k over the Brillouin zone. Guided by this
observation, below we express snk;k0 in terms of geometric
invariants of Bloch bands such as Berry curvature. We first

note that the Bloch overlap snk;k0 for k0 ∼ kþ dk can be
expressed as

snk;kþdk ¼ 1þ hunðkÞj∂ki junðkÞidki
þ 1

2
hunðkÞj∂ki∂kj junðkÞidkidkj þ � � � : ð2Þ

The first order term in dk is the Berry connection iAi,
which is related to the Berry curvature as ΩðkÞ ¼
∇ ×AðkÞ [13]. Equation (2) is not gauge invariant in that
it does not transform as a tensor under the transformation
~unðkÞ ¼ unðkÞeiαðkÞ. However, if one chooses a closed
path in k space, arbitrary phases which arise under the
Uð1Þ gauge transformation mutually cancel each other to
give gauge-invariant quantities. Indeed, only such closed-
loop terms appear in the characteristic polynomial of the
eigenvalue problem in Eq. (1). It can be shown that, up to
second order in dk [16],

huk1
juk2

i…hukN−1
jukN

i ∼ e½i
H

A·dk−ð1=2Þ
R

gijdkidkj� ð3Þ

for a closed path, such that ukN
¼ uk1

. The first exponential
on the rhs is nothing but the Berry phase of the closed path,
while the second term in the exponential is the squared
“length” of the path defined in terms of the quantum
geometric tensor gij ¼ Re½h∂kiuðkÞj∂kjuðkÞi� −AiAj. The
QGT, also referred to as the Fubini-Study metric, is a
gauge-invariant quantity corresponding to the second order
derivative in Eq. (2) which measures the infinitesimal
distance between the Bloch states parametrized by k
[17]. Thus, the gauge-invariant Bloch overlaps over a
closed loop can be expressed solely in terms of geometric
quantities characterizing the Bloch bands. It is instructive to
study the effect of Bloch overlaps perturbatively, for which
we consider an infinitesimal loop, when all k’s are close to
each other. Equation (3) then becomes

1þ iΩ · dSk −
1

2
gijdkidkj þ � � � ; ð4Þ

where we have expressed
H
A · dk in terms of the Berry

curvature as
R
Ω · dSk using Stokes’s theorem. The imagi-

nary part of the above expression is proportional to the
Berry curvature, which is an antisymmetric quantity,
whereas the real part is proportional to the QGT, a
symmetric quantity. When calculating Bloch overlaps for
conduction and valence bands, the difference (sum) of the
Berry curvatures (QGTs) of the two bands appears.
Illustrative model: Gapped graphene.—Having estab-

lished a connection between the Bloch overlaps and the
geometry of Bloch bands, we now illustrate how the Berry
curvature and the QGT affect the exciton spectrum using a
toy model. Consider a two-band model of graphene with a
band gap at �K points for which Bloch overlaps snk;k0 can
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be analytically obtained. The Hamiltonian can be written in
a Pauli basis of the two bands as HðkÞ ¼
ðatkx; atτvky;Δ0Þ, where a is the lattice constant, t denotes
the hopping energy, and τv ¼ �1 is the valley index. The
presence of inversion symmetry breaking band gap Δ0

results in an equal but opposite Berry curvature near the
valleys at the �K points [18,19]. We assume that Δ0 is
large enough that the magnitude of Berry curvature at the
�K points jΩ0j ¼ a2t2=Δ2

0 is small and can be taken to be
constant in the k region where the exciton wave function
extends, i.e., Ω0jkj2 ≪ 1 for jkj ∈ δk ∼ 1=aB around the
�K points.
Under these assumptions,

sck;k0svk0;k ¼ 1þ jΩ0j
2

�
iτvðk0 × kÞ − 1

2
jk − k0j2

�
þ � � � ;

ð5Þ

up to first order in jΩ0j. Thus, jΩ0j serves as a small
parameter for perturbative treatment of the Bloch part. Note
that Eq. (5) is analogous to Eq. (4) for the present model. In
particular, the imaginary, antisymmetric part (opposite in
the two valleys) corresponds to the Berry curvature, while
the real symmetric part corresponds to the QGT. Under the
assumptions of the toy model, both the Berry curvature and
the QGT are proportional to jΩ0j ¼ a2t2=Δ2

0. Plugging
Eq. (5) into Eq. (1), one can write the exciton Hamiltonian
of Eq. (1) perturbatively as Hex ¼ HH þ VI, where HH is
the Hamiltonian without the Bloch part describing the 2D
hydrogen atom, while VI is the perturbative term due to
Bloch overlaps, which reads as

VI ¼ jΩ0j
2

2πe2

Sε

�
1

2
jk − k0j − iτv

ðk0 × kÞ
jk − k0j

�
: ð6Þ

We ignore the k dependence of ε to identify the contri-
bution of the Bloch overlaps. The Hermitian operator VI

can be decomposed into a real, symmetric part, VI
S, and an

imaginary, antisymmetric part, VI
AS.

In order to determine the new eigenvalues and eigen-
states of the perturbed Hamiltonian, one needs to calculate
the matrix elements of VI in the basis of 2D hydrogenic
levels. We first consider the effect of VI on 2px and 2py
states which are degenerate in the 2D hydrogen atom.
Because of the symmetry of VI

AS under the exchange of k
and k0, its diagonal matrix elements vanish, while the off-
diagonal matrix elements are finite. Likewise, VI

S only has
diagonal matrix elements which are nonzero.
The new eigenstates are obtained by diagonalizing the

following matrix:

�EH
2p þ hψ2px

jVI
Sjψ2px

i hψ2px
jVI

ASjψ2py
i

hψ2py
jVI

ASjψ2px
i EH

2p þ hψ2py
jVI

Sjψ2py
i

�
: ð7Þ

It is clear that the off-diagonal matrix elements arising from
the antisymmetric part of the VI will mix the 2px and 2py
states into symmetric and antisymmetric combinations
jψ2p�i ¼ ð1= ffiffiffi

2
p Þðjψ2px

i � ijψ2py
iÞ, causing them to split.

On the other hand, the diagonal matrix elements due to the
symmetric part of VI will cause a shift in energies of jψ2p�i
by the same amount.
Under the assumption of a small, constant Ω0 and k

close to the K point, we numerically evaluate the matrix
elements in Eq. (7) to be hψ2px

jVI
ASjψ2py

i ¼ −iτvjΩ0jc=2
and hψ2px

jVI
Sjψ2px

i∼ − jΩ0jc=4, where c > 0 is a constant.
The energies of 2p� states are obtained to be E2p� ¼
E2p − jΩ0jc=4� jΩ0jc=2. The splitting between the 2p
states is thenΔ2p ∝ τvjΩ0j. For s states, only the symmetric
part VI

S survives, due to symmetry reasons, leading to a
blueshift in energy. We find that the shift of 2s states is
∼jΩ0jc=4, making it almost degenerate with the 2pþ state,
under our assumptions. Figure 1 shows a schematic energy-
level diagram of the model with and without the Bloch
perturbation. Upon setting the Bloch overlap to be unity, we
find that the 2p states remain degenerate, resembling
unmixed 2px and 2py orbitals, thereby confirming the role
of Bloch overlaps in causing splitting.
Discussion.—The above scenario is an analog of the

orbital Zeeman effect, where degeneracy of the 2p states of
a hydrogen atom is lifted in the presence of a constant
magnetic field due to a coupling to angular momentum l, an
antisymmetric quantity. Berry curvature is the momentum-
space analog of magnetic field, and the splitting here can be
thought of as a “momentum-space orbital Zeeman effect.”
In general, the degeneracy of all l ≠ 0 states of a 2D
hydrogen atom will be lifted due to Berry curvature, as in
the case of the orbital Zeeman effect. Because of the
appearance of valley index τv in VI

AS, the splitting is the
opposite in the two valleys, as required by time-reversal
symmetry. We emphasize that this splitting, which arises

FIG. 1 (color online). A sketch of energy levels of the gapped-
graphene model under assumptions of small, constant Berry
curvature (Ω0) and large exciton Bohr radius. In the absence of a
Bloch term in the numerical calculations, n ¼ 2 states remain
degenerate, as with the hydrogen atom. Upon the inclusion of a
Bloch term, the 2p states mix and split due to Ω0, much like the
orbital Zeeman effect. The shift in energy levels arises from the
quantum geometric tensor (gij) and is analogous to Lamb shift in
the hydrogen atom.
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from local (in reciprocal space) time-reversal symmetry
breaking due to nonzero Berry curvature in the two valleys,
cannot arise from nonlocal screening or nonparabolic
dispersion which obeys time-reversal symmetry.
From Eq. (4), we can conclude that when Berry

curvature is small but not constant, it is the Berry flux
through the exciton wave function which determines the
splitting. We note the similarity of our findings with that of
Ref. [20], where excitons on the surface of topological
insulators with explicitly broken time-reversal symmetry
were considered.
One can also consider a two-band model with an

identically zero Berry curvature to confirm that the mixing
of 2px and 2py states stems from Berry curvature. If
(hxðkx; kyÞ; hyðkx; kyÞ;Δ0) is the Hamiltonian in a Pauli
matrix basis, then choosing hxðkx; kyÞ ∝ hyðkx; kyÞ gives a
vanishing Berry curvature, as it is proportional to
∂hx × ∂hy. Indeed, in numerical calculations we find that
the 2p wave functions for such a model remain unmixed.
Next, we comment on the role of the QGT in determining

the exciton spectra. The QGT can be rewritten as

gij ¼ Re½h∂kiuj∂kjui� − h∂kiujuihuj∂kjui
¼ hXiXji − hXiihXji; ð8Þ

where the operator X is the generator of translation in the k
space. The QGT then measures the quantum fluctuations of
X [17]. In the present case, X corresponds to a spread in the
relative position of the electron and the hole. This is not
unlike the case of Lamb shift in a hydrogen atom where
vacuum fluctuations of the electromagnetic field smear the
electron’s position, in turn changing its potential energy
and resulting in a blueshift of its energy [21]. To make the
analogy quantitative, we derive the dependence of the QGT
related shift on the effective fine structure constant ~α ¼
e2=ðεatÞ and the mass gap Δ0. As expected, we find a
dependence which is similar to that for the hydrogenic Lamb
shift, further confirming the analogy [16]. It is noteworthy
that the magnitude of this Lamb-like shift can be relatively
large compared to the hydrogenic Lamb shift; this obser-
vation can be thought of as a consequence of the fact that the
effective fine structure constant of the gapped-graphene
model, α ¼ e2=ℏv, is on the order of unity [22]. Even
when Berry curvature vanishes identically, the effect of the
QGT can still remain. Thus, we have identified another
physically relevant consequence of the QGT, which has been
previously shown to play a central role in such varied
phenomena as electric polarization in insulators [23], current
noise [14], superfluidity [24], fractional Chern insulators
[25], and quantum phase transitions [26,27].
TMD excitons.—In the following, we investigate how the

predictions of the preceding discussion apply to TMD
excitons. We first note that the experimentally observed
deviation from a hydrogenic series arises due to a combi-
nation of nonlocal dielectric screening, nonparabolic

dispersion of bands, and the effect of the Bloch part.
The assumption of constant and small Berry curvature no
longer holds due to the large spread of exciton wave
function in k space. In addition, unlike other material
systems such as GaAs where the lowest energy exciton is
made from electron-hole states near the Γ point (k ¼ 0),
lowest energy excitons in TMDs are made from �K-point
electron-hole pairs where there is nonzero Berry curvature.
Thus, we expect a mixing and splitting of 2p states in
addition to energy shifts due to the QGT.
We solve for the eigenvalue problem in Eq. (1) using a

three-band, next-nearest neighbor model, for MoS2 and
WSe2, which captures the band dispersion of conduction
and the valence band throughout the Brillouin zone [28].
We discretize the Brillouin zone into a grid of 136 × 136 k
points and assume an air-suspended sample with a nonlocal
dielectric screening length r� ∼ 15 Å, corresponding to a
binding energy of ∼400 meV for the 1s state, which is
estimated to be in the range of 300–700 meV [5,9,29].
The Coulomb part of the Hamiltonian is calculated such
that jk − k0j is always restricted to the first Brillouin zone.
Figures 2(a) and 2(b) show the 2p wave functions for a

MoS2 exciton with and without the Bloch part. As in the
case of gapped graphene, 2p states remain unmixed with-
out the inclusion of the Bloch part in the calculations. With
the Bloch term included, we obtain a 2p splitting ∼10 meV
(∼14 meV) for MoS2 (WSe2), which is consistent with the
recently reported splitting of ∼25 meV in MoS2 [11].
Given the relatively large splitting, it should be possible
to detect it experimentally using two-photon, polarization
resolved optical spectroscopy involving a near-infrared
laser slightly detuned from the 1s exciton and a midinfrared

FIG. 2 (color online). Calculated squared amplitude of 2p wave
functions in reciprocal space for MoS2 in (a) the absence and (b)
the presence of Bloch overlap. The Brillouin zone is chosen such
that Γ points lie on the four vertices. The exciton wave function
extends near the �K points. Without the Bloch perturbation, the
wave functions are degenerate and resemble 2px and 2py wave
functions. Bloch perturbation mixes the states which resemble
2p� states and have an energy splitting of about ∼10 meV. (c) A
sketch of energy levels with a scheme for optically determining
the predicted splitting of 2p states using two-photon resonance
spectroscopy.
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laser, as shown in Fig. 2(c). When the two lasers are
cocircularly (countercircularly) polarized, a lower (higher)
energy 2p state will be excited in a two-photon resonance
leading to an enhancement in photoluminescence from the
1s state. We note that even in the absence of a Bloch part,
trigonal warping of the dispersion can lead to a degeneracy
lifting between the 2px and 2py states; however, they
remain unmixed and the magnitude of the splitting is much
smaller than the Berry curvature induced splitting. We also
note that the level diagram in Fig. 2(c) is strictly true for
Kc:m: ¼ 0, as the long-range part of the exchange inter-
action will mix the states in opposite valleys for a finite
Kc:m: [30].
Conclusions.—The central role played by the Berry

curvature in determining the transport properties of non-
interacting Bloch electrons, leading to anomalous valley
and spin Hall effects, is well established. Our results, on the
other hand, unequivocally demonstrate that the spectrum of
Coulomb-correlated two-particle bound states exhibit
observable signatures of Berry curvature and the QGT.
This leads to the question of whether many-body optical
excitations of semiconductors, such as trions in a 2D
electron system, are also influenced by effective gauge
fields in solids arising due to the nontrivial geometry of the
Bloch bands.
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Note added.—Recently, a manuscript appeared reporting
similar results using an effective Hamiltonian for exci-
tons [31].
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