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We show that a strongly interacting chain of Majorana zero modes exhibits a supersymmetric quantum
critical point corresponding to the c ¼ 7

10
tricritical Ising model, which separates a critical phase in the Ising

universality class from a supersymmetric massive phase. We verify our predictions with numerical density-
matrix-renormalization-group computations and determine the consequences for tunneling experiments.
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Supersymmetry (SUSY) is a theoretical framework,
which predicts a fermionic superpartner for every bosonic
elementary particle, explaining long-standing puzzles (see,
e.g., Ref. [1] and the references therein). The experimental
verification of SUSY, however, has remained elusive.
Another important milestone of physics is Majorana’s
prediction of fermionic particles that are their own anti-
particle. Neutrinos were Majorana’s original candidate for
these so-called Majorana fermions, but their experimental
status remains unclear [2,3].
While both Majorana fermions and SUSY are yet to be

observed in high energy physics, Majorana fermions are
predicted to emerge as collective excitations in many-body
systems of electrons [4–11]. Of particular interest are
unpairedMajorana fermions, localized to topological defects
such as vortices or domain walls, that occur at zero energy.
These Majorana zero modes (MZMs) provide a promising
candidate platform for topological quantum computing [7].
There has been significant recent experimental progress
toward the detection of the condensed-matter incarnations
of MZMs [12–18]. Strongly interacting Majorana fermions
may serve as building blocks for novel phases of matter,
which remain relatively unexplored [19–24].
On the other hand, there have been few works on the

realization of SUSY in condensed matter physics [25–31].
The canonical example of emergent SUSY in statistical
physics is the tricritical Ising (TCI) model in 1þ 1
dimensions [32–34]. This model is the second simplest
unitary minimal conformal field theory (CFT) in 1þ 1

dimensions. It has central charge c ¼ 7
10
(Ising model with

c ¼ 1
2
being the simplest). It is also the only such CFT that

exhibits SUSY.
Similar to the Ising model, the TCI CFT has two

realizations [32]: (i) spin models such as the Blume-
Capel model [35–37] in which all local operators are
bosonic, and (ii) fermionic models in which both fermionic
and bosonic local operators are present. Systems with
Majorana fermions as local degrees of freedom provide
promising candidates for realizing the fermionic models of

TCI CFT [38]. The local operator content of the TCI CFT,
which determines the experimentally accessible correlation
functions, is directly related to the finite-size spectrum with
periodic (antiperiodic) boundary conditions for the spin
(fermionic) model.
In the TCI CFT, there is only one relevant operator

allowed by symmetry (independent of the realization),
which must be fine-tuned to zero. This relevant operator
can destabilize the TCI CFT, causing a phase transition
either to a doubly degenerate gapped phase or the Ising
CFT phase (depending on the sign of the corresponding
coupling constant). This operator preserves the supersym-
metry of the Hamiltonian [32]. SUSY is thus preserved in
the gapped phase but spontaneously broken in the gapless
Ising phase [39]. While nonsupersymmetric irrelevant
operators could perturb the supersymmetric spectrum deep
inside the gapped phase, in the vicinity of the critical point,
the gapped phase is supersymmetric, with possible exper-
imental signatures in tunneling experiments.
Finding experimental realizations of the TCI CFT is of

great interest. Important progress was made recently by
constructing models of coupled bosonic degrees of free-
dom and fermionic Majorana modes, with the intuition that
these local bosonic degrees of freedom can serve as
superpartners to the Majoranas [40]. Purely fermionic field
theories can also give rise to the TCI CFT [38,41]. Here we
show that indeed the simplest lattice model of interacting
Majorana fermions, which may be realized in a super-
conducting vortex lattice and has clear experimental
signatures in scanning tunneling microscopy (STM)
experiments, gives rise to the TCI CFT and emergent
SUSY. Similar to Ref. [40], our model has the advantage
that the TCI critical point can be reached by tuning only
one parameter (thanks to translation invariance of the
model). The two models, however, differ in an important
aspect. The model of Ref. [40] can be thought of as a model
of interacting Majoranas upon integrating out the bosons.
However, at the critical point, these boson-mediated
interactions have a long-range character, whereas our
interactions are strictly local.
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We begin by writing the Hamiltonian

H ¼ it
X

j

γjγjþ1 þ g
X

j

γjγjþ1γjþ2γjþ3; ð1Þ

where γj ¼ γ†j (with fγi; γjg ¼ 2δij) is the annihilation (and
creation) operator for a MZM at position j in a one-
dimensional lattice. This model can describe a vortex lattice
in a narrow strip of a two dimensional topological super-
conductor [23]. Throughout this Letter we focus on g > 0,
for which supersymmetric phases emerge (setting g ¼ 1
without loss of generality) [42]. Positive g corresponds to
attractive interactions between the underlying Dirac fer-
mions, which may indeed appear in the presence of super-
conductivity. The model exhibits a rich and complex phase
diagram for g < 0, which is discussed elsewhere [43,44].
Our main result is the phase diagram shown in Fig. 1. For

jtj > tc, the system is described by the Ising CFT with
central charge c ¼ 1

2
, while for 0 < jtj < tc, we have a

gapped phase with broken symmetry. At jtj ¼ tc the system
realizes the c ¼ 7

10
TCI model. As we will see, tc is

extremely small (relative to the interaction strength g).
However, the regime of strong interactions is accessible in
experiments due to a chiral symmetry (at chemical potential
μ ¼ 0 in vortex realization of Majoranas), which forbids
hopping processes itγjγj0 [23,45]. By tuning μ, we can then
make t arbitrarily small without changing the interactions.
It is convenient [46] for the analysis of the problem to

break the translation invariance of the system and write a
more general Hamiltonian

H ¼ it1
X

j

αjβj þ it2
X

j

βjαjþ1 þ g1
X

j

αjβjαjþ1βjþ1

þ g2
X

j

βjαjþ1βjþ1αjþ2; ð2Þ

where αj ≡ γ2j and βj ≡ γ2jþ1. Each pair of Majoranas can
be written in terms of one Dirac fermion cj ¼ ðαj þ iβjÞ=2.
The product of two Majoranas is then related to the
occupation number of a Dirac fermion through iαjβj ¼
2nj − 1, where nj ¼ c†jcj. Note that the pairing of
MZMs into Dirac fermions is rather arbitrary and we
could have introduced another set of Dirac fermions
dj ¼ ðβj þ iαjþ1Þ=2.

In the limit of t → ∞ (g=t → 0), we see from Eq. (1) that
the system is described by a free massless Majorana theory
corresponding to the critical phase of the transverse field
Ising model:

Ht ≈ iv
Z

dxðγR∂xγR − γL∂xγLÞ; ð3Þ

where α ¼ 2ðγR þ γLÞ, β ¼ 2ðγR − γLÞ, and v is a velocity
related to the renormalized hopping t. No mass term
im

R
dxγRγL is present if we have translation symmetry.

To incorporate the interactions into the effective theory,
we Taylor expand the Majorana fields and obtain Hg ¼
−256g

R
dxγLð∂xγLÞγRð∂xγRÞ þ � � �, where the dots indi-

cate terms of third and higher order in derivatives. From
simple power counting, we find that the perturbation above
is irrelevant in the renormalization-group sense. This
implies that the Ising critical phase should extend at least
to a finite g=t [41].
Because of the large value of g=tc, the strong coupling

limit of the Hamiltonian provides a good qualitative
understanding of the gapped phase. It can be understood
in terms of the occupation numbers of the c and d Dirac
fermions as shown in Fig. 2. First, we consider the case of
t ¼ 0. A dominant positive g1 (g2) gives ferromagnetic [all
empty or all occupied] states for the occupation number
of the cðdÞ fermions. The phase transition at t ¼ 0 and
g1 ¼ g2 (between phases with dominant g1 and g2) is
expected to be first order so (i) all of these ferromagnetic
states are present in the ground state manifold of
Hamiltonian (1) for t ¼ 0 and (ii) there is a gap to
excitations. As discussed in the Supplemental Material
[47], the presence of a first-order transition for g1 ¼ g2 and
t ¼ 0 follows from the connection of our model to spin
chains [49] and, in particular, a generalized Ising spin chain
with multispin interactions, which bears a strong similarity
to the eight-state Potts model [50–53]. Despite being a
small perturbation, the hopping terms (depending on their
sign) lift the degeneracy between the all-occupied and all-
empty states leading to a doubly degenerate (instead of
fourfold) gapped phase for 0 < jtj ≪ g.
The analytical arguments for a gapped phase at strong

coupling are not rigorous. However, if the strong coupling

t gt(a)

t

(b)

tc-tc 0

Ising
c=1/2

gapped
c=0

TCI
c=7/10

FIG. 1 (color online). (a) The model with nearest-neighbor
hopping and interactions between four nearest Majoranas. (b) The
phase diagram of Hamiltonian (1) for g ¼ 1 as a function of t.

FIG. 2 (color online). The symmetry broken states at strong
coupling. The thick lines indicate pairs of Majorana operators
combined to form Dirac operators. The empty circles symbolize
that the resulting Dirac levels are empty. For both of the states
shown, there is another degenerate state, where are all Dirac
levels are filled.
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phase is a doubly degenerate gapped phase, and assuming
there is only one phase transition between the Ising phase
and this gapped phase, then the TCI CFT is the most natural
theory of this phase transition [47]. The c ¼ 1=2 Ising
(c ¼ 0 gapped) phase can be thought of as the line of a 2nd-
order (1st-order) transition at t1 ¼ t2 (g1 ¼ g2) in a regime
dominated by hopping (interaction). Similar to the Ising
model with vacancies [54], the critical point, at which the
2nd-order transition changes to the 1st-order transition,
naturally corresponds (at the mean-field level) to the Φ6

Landau-Ginzburg theory at its tricritical point, whose
universality class is given by the TCI CFT.
This scenario needs numerical verification. As discussed

below, we found that the picture is indeed correct and
the value of tc in the phase diagram of Fig. 1 is tc=g ¼
0.00405. This small value in turn implies a gapped phase
whose shortest correlation length is thousands of lattice
sites. Establishing the nature of the phases and determining
the value of tc is therefore exceedingly challenging with
most numerical diagnostics such as extrapolation of gaps
and order parameters as well as entanglement entropy.
Despite this, we found that universal ratios in the finite-size
spectrum provide a powerful numerical diagnostic for
determining the phase diagram even though the system
sizes we are able to reach are significantly smaller than the
correlation length of the gapped phase in our model.
Our evidence for the fermionic TCI CFT is the excellent

agreement between the theoretical predictions for several
universal ratios at the critical point shown in Table I, and
the numerically computed values of these ratios.
The subscripts A and P, respectively, indicate antiperi-

odic (APBC) and periodic (PBC) boundary conditions, E0

and E1 represent the energy of the ground state and the first
excited state in a given fermion-parity sector (denoted by
the superscripts even and odd), and ϵ0 is the thermody-
namic-limit energy density in the ground state. The fourth
universal ratio we use provides direct access to central
charge c through the general finite-size dependence of the
ground-state energy (which is in the even parity sector for
APBC): Eeven

A;0 ¼ ϵ0L − ð2πv=LÞðc=12Þ, where L is the
length of the system. [55].
We briefly outline the derivation of the above results

based on the relationship between the operator content and
the finite-size spectrum of the two CFTs. The results can be
obtained from the formalism developed in Refs. [56,57] as
discussed in the Supplemental Material [47]. We start with
the Ising model, for which the predictions can be verified
exactly in a free-fermion model. The Ising CFT has three

primary fields I (identity), σ (spin), and ϵ (energy) with
conformal dimensions h ¼ h̄ ¼ 0; 1

16
; 1
2
, respectively [a

field with conformal dimension ðh; h̄Þ has scaling corre-
lators hϕh;h̄ðx; tÞϕh;h̄ð0; 0Þi ¼ ðx − vtÞ−2hðxþ vtÞ−2h̄]. An
integer (half-odd-integer) conformal spin h − h̄ corre-
sponds to a bosonic (fermionic) excitation. Now in a
fermionic theory, we have APBC in the imaginary time
direction, which implies that modular invariance [58] can
be most easily satisfied if we also impose APBC in the
spatial direction. The analog of the fermionic model in the
Ising case is the free-Majorana model of Eq. (3), which has
the conformal towers ðI; IÞ, ðI; ϵÞ, ðϵ; IÞ, and ðϵ; ϵÞ with
APBC (due to modular invariance [58] as shown in the
Supplemental Material [47]), while the analog of the spin
model has only diagonal conformal towers with bosonic
excitations: ðI; IÞ, ðσ; σÞ, and ðϵ; ϵÞ.
In the fermionic model with APBC, the ground state and

the first excited state of the even parity sector have operator
content ðI; IÞ and ðϵ; ϵÞ, respectively (note that the con-
formal spin vanishes implying even fermion parity).
Similarly, the ground state in the odd parity sector is
doubly degenerate with operator content ðI; ϵÞ and
ðϵ; IÞ. For the Ising CFT, we then obtain Eeven

A;1 − Eeven
A;0 ¼

ð2πv=LÞð1
2
þ 1

2
Þ and Eodd

A;0 −Eeven
A;0 ¼ð2πv=LÞð0þ 1

2
Þ, which

lead to the first universal ratio shown in Table I.
The TCI model has 6 primary fields I, ϵ, ϵ0, ϵ00, σ, and σ0,

with scaling dimensions h ¼ h̄ ¼ 0; 1
10
; 3
5
; 3
2
; 3
80
; 7
16
, respec-

tively. Similar to the Ising case, we have Eeven
A;1 − Eeven

A;0 ¼
ð2πv=LÞð 1

10
þ 1

10
Þ. However, in this case, ðI; ϵÞ does not

appear in the modularly invariant conformal towers of the
fermionic realization of TCI CFT (notice that a conformal
spin of 1

10
is neither an integer nor half integer). Here, the

spin model also has 6 diagonal conformal towers, while, as
shown in the Supplemental Material [47], the fermion
model has 8 such towers with APBC, which include ðϵ; ϵ0Þ,
corresponding to the ground state of the odd sector with
APBC [47]. This has a conformal spin 3

5
− 1

10
¼ 1

2
. We then

find Eodd
A;0 − Eeven

A;0 ¼ ð2πv=LÞð3
5
þ 1

10
Þ, leading to the first

universal ratio in Table I. The spectrum with periodic
boundary conditions is a bit more involved but can be
similarly derived using CFT methods (see Supplemental
Material [47]).
We numerically computed the four gap ratios above with

the density matrix renormalization group (DMRG) method.
For the Ising and TCI CFT, the ratios above exhibit
remarkable independence from the system size for large
enough systems. On the other hand, in the gapped phase
(c ¼ 0), at least one of the above ratios, namely, ½ðEodd

A;0 −
Eeven
A;0 Þ=ðEeven

A;1 − Eeven
A;0 Þ� grows with system size for large

enough systems (it has a linear dependence on system size
for t ¼ 0 as shown in Fig. 3). This gap ratio was used to
detect the value of tc at the tricritical point. It plateaus at
7=2 for tc and approaches the Ising value of 1=2 for larger t.

TABLE I. Several universal ratios in the Ising and TCI CFTs.

CFT c
Eodd
A;0−E

even
A;0

Eeven
A;1 −Eeven

A;0

Eeven
P;0 −Eeven

A;0

Eeven
A;1 −Eeven

A;0

Eeven
P;1 −Eeven

A;0

Eeven
A;1 −Eeven

A;0

Eeven
A;0 −ϵ0L

Eeven
A;1 −Eeven

A;0

Ising 1
2

1
2

1
8

1
4

1
8

TCI 7
10

7
2

3
8

35
8

7
24
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Having found the value of tc, we then tested all four gap
ratios for larger systems (see the bottom panel) and found
excellent agreement with the theoretical predictions as seen
in Fig. 3.
We finally discuss the experimental signatures of the TCI

CFT. STM provides a powerful tool to probe local density
of states. Tunneling into MZMs can effectively probe the
critical exponent of the fermionic Green’s function. We
start with the Ising CFT (3). The nonvanishing fermionic
correlators are hγL;Rðt;xÞ;γL;Rð0;0Þi¼fi=½4πðvt�xþiδÞ�g,
where δ is a positive infinitesimal number. The equal-time
fermionic Green’s function then decays as 1=x. A closely
related quantity is the tunneling current from an STM tip
into a MZM, which goes as II ∝ V, where V is the bias
voltage.
In the TCI case, on the other hand, the leading fermionic

operator χ corresponds to ðϵ; ϵ0Þwith ðh; h̄Þ ¼ ð3=5; 1=10Þ,
which gives hχðt; xÞχð0; 0Þi ¼ ði=f2πðvt − xþ iδÞ½ðvtþ
iδÞ2 − x2�1=5gÞ, leading to equal-time Green’s functions,
which decay as jxj−7=5. The tunneling current then goes
as [47]

ITCI ∝ sgnðVÞjVj7=5: ð4Þ

In Fig. 4, we show the scaling behavior of the equal-time
Green’s function of our model computed for TCI (t ¼ tc)
and Ising (t ¼ 103 ∼∞), where the predicted exponents are
easily observed (g ¼ 1 in both cases). The only relevant

operator (that induces a transition to the gapped phase
from the TCI critical point) is ðϵ0; ϵ0Þ with dimension
3=5þ3=5¼6=5. We then expect a gap in the symmetry-
broken phase that scales as ðtc − tÞ5=4 near the critical
point [47].
As mentioned before, an important property of the

relevant ðϵ0; ϵ0Þ operator is that it is supersymmetric
[38,41,57]. Therefore the SUSYof the critical point should
extend into the gapped phase at least in the vicinity of the
critical point. In the gapped phase, the power-law depend-
ence of the tunneling current on V changes to exponential
dependence, from which the gap to the leading fermionic
excitation can be extracted. SUSY implies that the leading
bosonic excitation has the same gap as the leading
fermionic one. It should be possible to experimentally
determine this bosonic gap from Cooper-pair tunneling via
a superconducting tip or other bosonic probes such as
coupling to photons or phonons.
Considering the effect of disorder on the rich physics of

interacting Majoranas adds a new dimension to the problem
[59]: a recent manuscript, which appeared shortly after the
present Letter, examines the effects [43]. Our theory applies
to a translationally invariant system. Experimentally, it is
common to form Abrikisov vortex lattices with translation
invariance due to energetic reasons. Spontaneous dimeriza-
tion of the vortex lattice might occur, which would indeed
gap the system and destroy the TCI point. However, even in
that case, if the dimerization is weak, some signatures of the
critical point survive in a crossover regime.
In summary, we studied the phase diagram of the

simplest model of strongly interacting Majorana zero
modes in one dimension for attractive underlying
interactions (which may be realized in the presence of
superconductivity). Supported by extensive numerical cal-
culations, we demonstrated that our model provides one of
the few examples of emergent spacetime SUSY in con-
densed matter physics and the first lattice model realization
of TCI SUSY in a purely fermionic system with local
interactions (a different type of SUSY has been predicted in
a lattice model with six-fermion interactions [25]). The
vortex lattice experimental realization of our model fosters
the thus far elusive observation of SUSY, with clear

FIG. 3 (color online). Top: The detection of the critical point
through one of the universal ratios. Bottom: The values of four
universal gap ratios at the tricritical point t=g ¼ 0.00405 as a
function of L (for systems with 2L Majoranas). The numerical
results (data points) show excellent agreement with the CFT
predictions (black lines at 7=2; 7=24; 3=8, and 35=8). The DMRG
truncation errors are insignificant (up to 1000 states were kept in
the computations).

FIG. 4 (color online). The scaling behavior of the fermionic
Green’s function (obtained with DMRG keeping 800 states) for
the Ising and the TCI CFTs observed in our microscopic model.
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signatures in the behavior of the tunneling current into a
Majorana mode.
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