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We analyze a microscopic mechanism behind the coexistence of a heavy Fermi liquid and geometric
frustration in Kondo lattices. We consider a geometrically frustrated periodic Anderson model and
demonstrate how orbital fluctuations lead to a Kondo-screened phase in the limit of extreme strong
frustration when only local singlet states participate in the low-energy physics. We also propose a setup to
realize and study this exotic state with SUð3Þ-symmetric alkaline-earth cold atoms.
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Introduction.—Geometric lattice frustration plays a cru-
cial role in Mott insulators [1] where it usually suppresses
long-range magnetism by enhancing the number of com-
peting magnetic ground states. At zero temperature, this
degeneracy may be relieved in favor of a quantum non-
magnetic phase such as a spin liquid or valence bond
ordering [2]. On the contrary, lattice topology in most
metals is less important due to long-range magnetic inter-
actions mediated by the itinerant electrons and small static
magnetic moments.
The situation is different in cases when magnetic and

itinerant behaviors originate from physically distinct
degrees of freedom [3]. For example, in heavy-fermion
(HF) metals [4,5] magnetic moments arise from localized
4f or 5f electrons, while conduction electrons typically
reside in extended atomic s orbitals. Low-temperature
properties of such systems are driven by several opposing
quantum many-body effects: (i) Kondo screening, i.e., the
formation of singlets between local moments and itinerant
electrons that gives rise to “heavy” quasiparticle states with
delocalized f electrons, (ii) local-moment long-range
magnetism, and (iii) nonmagnetic states due to lattice
frustration that involve singlets only among local spins.
Geometrically frustrated f-electron compounds [or Kondo
lattices (KLs)] such as Yb2Pt2Pb [6] received much
attention in the recent years [7–10].
The magnetism, Kondo effect, and geometric frustration

compete because they involve same local electrons which
cannot simultaneously form singlets with each other and the
conduction band. This observation underpins the generic
phase diagram of HF materials [7] that classifies them
according to the amount of quantum fluctuations of local
magnetism [11], and precludes Kondo screening in strongly
frustrated lattices. The antagonism between the Kondo effect
and lattice frustration only occurs in cases that involve pure
spin degrees of freedom. In contrast, in systems withmultiple
local orbitals, orbital fluctuations allow local-spin singlets to
participate in the Kondo screening [12,13] together with the
usual “spinful” states. If the singlets were due to frustration,

the local orbital fluctuations might provide a pathway
towards a strongly frustrated Kondo-screened state.
In the present Letter we argue that such a phase with

coexisting Kondo and frustration-driven local-spin singlets
can indeed be realized. To demonstrate this, we consider a
toy system—a periodic Anderson model on a triangular
tube lattice (TTL) of Fig. 1(a) with frustrated triangular
plaquettes (due to large antiferromagnetic exchange inter-
action between localized electrons) in the Kondo regime
when valence fluctuations are suppressed and each pla-
quette has a spin-singlet ground state (GS) with exactly two
fermions. Because of different possible arrangements of
local valence bond (VB) singlets [14], this GS is triply
degenerate. Although local spins are quenched in the
singlet states, orbital fluctuations [Fig. 1(b)] allow the
mixing of the VB configurations by the Anderson hybridi-
zation with the conduction band, and give rise to a robust
Kondo-screened GS with heavy quasiparticles and delo-
calized VB singlets [Fig. 1(c)].
This KL can be implemented using fermionic alkaline-

earth atoms (AEAs), i.e., atoms with two outer electrons, in
an optical lattice [see Fig. 1(d)]. AEAs prepared in the two
lowest clock states (1S0 and 3P0) with total angular
momentum J ¼ 0 show a strict decoupling of electronic
orbital and nuclear-spin degrees of freedom, and obey an
accurate SUðN ≤ 2I þ 1Þ (I is the nuclear spin) symmetry
in the two-body collisions [15] which has been recently
verified with 87Sr [16] and 173Yb [17,18]. Our key
observation is that the local VB singlets can be encoded
with entangled states of two AEAs [Fig. 1(e)] prepared in
different clock configurations and three nuclear-spin levels.
The degeneracy of these states is guaranteed by the
SUðN ¼ 3Þ symmetry. The entangled atomic pairs are
loaded in the lowest, strongly localized, band of a magic
optical lattice whose trapping potential does not affect
clock transitions [19], and implement the locally frustrated
plaquettes (the optical lattice itself does not need to be
geometrically frustrated). The conduction electrons are
simulated by placing AEAs in a higher, itinerant band.
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At low energies, both of the above systems are described
by a KL model with a peculiar SUð3Þ structure. In the
metallic regime, its GS is a Fermi [in one dimension (1D),
Luttinger] liquid consisting of delocalized VB singlets
(AEA pairs) screened by itinerant fermions, which can
be viewed as a short-range resonant VB spin liquid [20]
stabilized by the Kondo effect.
Toy model: SUð3Þ KL on a TTL.—Let us consider a

periodic Anderson model on the lattice of Fig. 1(a)

HTTL¼
X
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†
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which describes a system of conduction electrons ckaσ
with momentum k in the ath lead (a ¼ 1;…; 3), spin

σ ¼ f↑;↓g, and hybridized (via an amplitude v) with
local electrons diaσ at each vertex a of a triangle at
position xi ¼ i. Nd ¼

P
an

d
ia ¼
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†
iaσdiaσ and Sd ¼
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†
iaασαβdiaβ (σ are Pauli matrices) define the electron

number and total spin of a triangle. The dispersion εkσ ¼
ϵk − hσ includes a small (compared to other magnetic
interactions) Zeeman splitting h whose role we explain
later. The term Hmix describes the mixing of fermions in
different leads a and for now will be ignored.
There are several energy scales associated with each

triangle: local binding energy ϵd > 0, the nearest-neighbor
Coulomb repulsion U, “Hund” energy JH ≥ 0 that forces
the lowest total spin Sd, and an infinitely large on-site
Coulomb repulsion preventing double occupancy of any
vertex a. We focus on a two-electron Sd ¼ 0 subspace
which contains a threefold degenerate GS when
U − 3

4
JH < ϵd < 2U þ 3

4
JH,

jaii ¼
1ffiffiffi
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†
ib0↑d

†
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where sab0b ¼ sabb0 ¼ 1when a, b, and b0 are different, and 0
otherwise; jvaci is the vacuum (Nd ¼ 0) state. These states
are labeled by the number of an unoccupied vertex.
We will fix ϵd ¼ 3

2
U and consider the strong-coupling

regime v ≪ ϵd; U; JH when fluctuations of Nd on each
triangle are virtual and can be taken into account via
a generalized Schrieffer-Wolff transformation S [21] (see
also the Supplemental Material [22,35–37]) that includes
processes shown in Fig. 1(b). A straightforward calculation
yields the second-order KL Hamiltonian

HTTL
ef ¼

X

kaσ

εkσc
†
kaσckaσ −

X

iσab

Vabf
†
iafibc

†
iaσcibσ ð3Þ

that describes scattering of conduction electrons by the
local VB singlets and is defined on a nonfrustrated lattice
whose sites correspond to triangles in Fig. 1(a). The
coupling constants are Vab ¼ V⊥ð1 − δabÞ þ V∥δab with
V⊥ ¼ −ðv2=2ΔÞ, V∥ ¼ ð3v2=2ΔÞ, δab—the Kronecker
delta, and the valence fluctuation gap, Δ ¼ 1

2
U þ 3

4
JH.

The states, Eq. (2), are described with a pseudofermion
representation [5]

jaii → f†iajvaci ð4Þ
with a Hilbert space constraint

P
af

†
iafia ¼ 1. Because

only Sd ¼ 0 triangle states are involved in the low-energy
physics, interactions in HTTL

ef preserve electron spin σ and
only change the orbital (lead) degree of freedom a.
As a result, Eq. (3) describes a two-channel KL model

(spin is the channel index) [38]. It is known that the
two-channel fixed point is usually unstable with respect to
channel asymmetry [38] controlled by the Zeeman splitting
h. Since even for small h ≪ JH the leads may be consid-
ered spin polarized, below we omit the spin index σ and
replace ciaσ → cia↑ ≡ cia and εkσ ¼ εk↑ ≈ ϵk.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 1 (color online). (a) The triangular tube lattice. Black and
blue circles denote local (d†iaσ) and itinerant (c

†
kaσ) electrons. Grey

ellipses are VB singlets (2) (empty circles indicate holes).
Itinerant fermions propagate (by hopping between triangles with
an amplitude t) in the leads with momentum k. (b) Valence
fluctuations away from the two-electron singlet GS of a triangle,
leading to VB flips. (c) Schematic plot of the VB delocalization
and heavy-fermion formation due to Kondo screening. Shaded
regions are Fermi surfaces in the Brillouin zone. (d) Magic optical
lattice that implements the frustrated KL model (3) [band 1 (2) is
localized (itinerant)]. Red and blue circles are AEAs in 3P0 (e)
and 1S0 (g) clock states. Grey ellipses show local e − g entangled
states (with energy −Veg). V 0

eg and Vgg are the interband
exchange interactions (Veg ≫ V 0

eg; jVggj). (e) Mapping from
VB singlets on a triangle to lowest-energy e − g pair states for
SUð3Þ AEAs. (f) Two different scattering lengths for spin
symmetric jti and antisymmetric jsi channels. The three levels
indicate nuclear-spin states for each atom (the black circle marks
a populated state).
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The Hamiltonian in Eq. (3) contains matrix elements
connecting all three possible local VB states and conduc-
tion electron “flavors” a, and is an anisotropic (XXZ-like)
SUð3Þ KL model written in terms of generators Tb

aðxiÞ ¼
f†iafib and ~τbaðxiÞ ¼ c†ibcia for local and itinerant degrees of
freedom [39]. The local SUð3Þ “spin” operators Tb

aðxiÞ
describe orbital fluctuations in Eq. (1) that flip the VB
singlets, Eq. (2). HTTL

ef in Eq. (3) is invariant under Uð1Þ
transformations fia → eiϕafia and cia → e−iϕacia that pre-
serve the V⊥ term. There is also a discrete lattice symmetry
C3v ¼ fC3; σvg [24] that contains 2π=3 (C3) rotations
around the TTL axis and three symmetry planes σv of
the triangles.
Kondo effect-assisted VB phases.—To demonstrate that

the model, Eq. (3), has a Kondo-screened GS, we use a
generalized hybridization mean-field (HMF) approach [40]
that treats the f-fermion Hilbert space constraint on
average, ð1=NÞPiahf†iafiai ¼ 1 (N is the system size),
and self-consistently compute the hybridization and
SUð3Þ “magnetization” order parameters (OPs) [35].
We assume that all OPs are site independent. There are
three hybridization amplitudes: χ0 ¼ 1ffiffi

3
p

P
ahfiaciai, χ1;2 ¼

ð1= ffiffiffi
3

p Þhfi1ci1 þ ω∓1fi2ci2 þ ω�1fi3ci3i with ω ¼ e2πi=3,
and eight magnetizations mc

l [mf
l ] for c [f] fermions

defined via hc†iacibi ¼
P

lλ
l
abm

c
l þ ðnc=3Þδab [hf†iafibi ¼P

lλ
l
abm

f
l þ 1

3
δab] where λl are the Gell-Mann matrices;

l ¼ 1;…; 8; and nc is the conduction band filling. Unlike
the real SUð2Þ magnetization, mc;f do not break time-
reversal invariance but rather the above Uð1Þ and C3v
symmetries. The OPs χ1 and χ2 are connected (up to a
phase) by the planes σv from C3v. Finite mc;f

3;8 completely
break C3v leading to nematic states; mc;f

l with l ≠ 3; 8 also
break the above Uð1Þ symmetry. Kondo-screened states
correspond to either OP χ0;1;2 ≠ 0. We call phases with
χ1 ≠ χ2 chiral, see the table in Fig. 2.
The phase diagram of the Hamiltonian in Eq. (3) is

shown in Fig. 2 for ϵk ¼ −2t cos k (t is the nearest-neighbor
hopping). There is a first order transition between a normal
state with χ0;1;2 ¼ 0, and a Kondo-screened phase with
χ1 ≠ χ2 ≠ 0 (but χ0 ¼ 0) and nonzero mc;f

3;8 . This chiral
nematic phase has delocalized VB singlets. The OPs mc;f

survive only at low temperature T ≤ Tc ∼ 5 × 10−2t; for
T > Tc the only finite OP is χ1 and the GS realizes a chiral
metallic VB spin liquid.
Stability of the Kondo-assisted VB liquid.—The Kondo

phase in Fig. 2 is quite robust against changes in the
noninteracting itinerant density of states (DOS). To show
this, we consider a model DOS that corresponds to a square
lattice with ϵk ¼ −2tðcos kx þ cos kyÞ; see the inset in
Fig. 3. The phase diagram obtained by applying the
HMF approach to the KL, Eq. (3), is presented in
Fig. 3. Unlike the 1D case in Fig. 2, the chiral VB liquid
with χ1 ≠ 0, χ0;2 ¼ 0, and mc ¼ mf ¼ 0 exists even at
T ¼ 0 for V⊥ ≤ 0 and large V∥. Only mirror symmetry

from C3v is broken by this state. With decreasing jV⊥j
and V∥ the system undergoes a transition to a nematic
metallic state with mc;f ≠ 0 and completely broken C3v.
The situation is different for V⊥ ≥ 0. Here the only nonzero
OP is χ0 and the VB liquid GS does not break any discrete
symmetry. All these Kondo-screened states become unsta-
ble at small jV⊥j and V∥.
The phase transitions in Figs. 2 and 3 are first order,

which may be an artifact of the HMF approximation.
In general, at T ¼ 0 the emergence of nonzero OPs χ0;1;2
is associated with a phase transition (as opposed to a
crossover) when fluctuations beyond HMF are taken into
account [41]. Therefore, salient features of our phase
diagrams should remain unchanged.
Finally, we mention effects of a finite lead-mixing Hmix

in Eq. (1). Its simplest form (compatible withC3v symmetry
of the TTL) corresponds to the hopping of itinerant and
local fermions around the triangle. This correction results
[36] in a Zeeman-like term, proportional to the intratriangle
hopping, which lifts degeneracy of the local VB states,
Eq. (2), and can suppress the Kondo phase in Fig. 2 if this
splitting is sufficiently large [4].
Implementation with ultracold AEAs.—We propose an

experimentally accessible implementation of the KLmodel,
Eq. (3), with AEAs in an optical lattice, which is free of the
mixing described byHmix. The key idea of our approach is to
use nuclear-spin states of the atoms as “synthetic” frustrated
plaquettes [corresponding to triangles in Fig. 1(a)] and
construct an appropriate low-energy model that takes into

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

FIG. 2 (color online). T ¼ 0 phase diagram of the KL model,
Eq. (3), with N ¼ 4900 sites and electron density nc ¼ 0.8.
mtot ¼ ½ðmc

3 þmf
3Þ2 þ ðmc

8 þmf
8Þ2�1=2 plays a role of the total

magnetization. The black circle at V∥=t ∼ 0.76 marks the first
order transition between Kondo-screened and normal phases.
Inset: The HF band structure. The band splitting at the Fermi level
is ∼Vχ1;2. The table shows symmetries broken by different OPs
and corresponding VB liquid phases.
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account these local states as well as the itinerant degrees of
freedom, and is unitarily related to the KL model, Eq. (3).
TheGS degeneracy of a synthetic plaquette is guaranteed by
the SUðN ¼ 3Þ symmetry of the AEAs.
Consider a two-band optical lattice schematically shown

in Fig. 1(d). The lowest-energy band is localized and con-
tains two AEAs per site in different clock states: one 1S0
(GS, g) and one 3P0 (excited state, e). Tominimize lossy e-e
collisions, the higher-energy itinerant band is populated
only by g atoms. The Hamiltonian of the system is [15]

HA ¼−t
X

hiji
ðc†incjnþH:c:Þþ

X

i

�
Ugg

2
nci ðnci − 1Þ

þ ðVggg
†
ingimþV 0

ege
†
ineimÞc†imcinþVege

†
ineimg

†
imgin

�
;

ð5Þ
where gin (ein) denote g (e) fermions in the localized band
at site i and nuclear-spin state n ¼ 1̄; 0; 1 [n̄ ¼ −n,
i.e., 1̄ ¼ −1, 0̄ ¼ 0], and c†in create itinerant g atoms.
There is an implicit summation over nuclear-spin indices.
The first term describes nearest-neighbor hopping with an
amplitude t. The second sum corresponds to e-g (Veg
and V 0

eg) and g-g (Vgg) exchange couplings, as well as
direct g-g interaction Ugg ≥ 0 [see Figs. 1(d)–1(f)]. Veg and
V 0
eg have the same sign, and Vgg is negative [42].
States of a localized e-g pair are described by the term

HlocðxiÞ ¼ Vegg
†
ingime

†
imein whose spectrum consists of a

triply degenerate GS subspace with energy −Veg,

jlii ¼
1ffiffiffi
2

p εlnme
†
ing

†
imjvaci ð6Þ

(εlnm is the antisymmetric Levi-Civita tensor, ε101̄ ¼ 1),
and a sextet jli0i ¼ ð1= ffiffiffi

2
p Þslnme†ing†imjvaci [sabc was defined

in Eq. (2)], and jli00i ¼ e†ilg
†
iljvaci with energy þVeg. We

assume that Veg is large, Veg ≫ jVggj; V0
eg; t [43], neglect

mixing of the above sectors, and project the Hamiltonian in
Eq. (5) onto the subspace, Eq. (6). Using the relations

ihlje†ineimjpii ¼ ihljg†ingimjpii ¼ 1
2
ðδlpδnm − δmlδnpÞ and

the pseudofermions, Eq. (4), we obtain an effective model

HA
ef ¼

X

kl

ϵkc
†
klckl −

X

i

�
Vf†ilfipc

†
ilcip −

Ugg

2
nci ðnci − 1Þ

�
;

ð7Þ

with V ¼ ½ðV 0
eg þ VggÞ=2�. If the states, Eq. (6), are iden-

tified with VB singlets, Eq. (2), on a triangle [Fig. 1(e)]
by assigning a nuclear-spin flavor m to each vertex, HA

ef in
1D is equivalent to (spin-polarized) HTTL

ef in Eq. (3) with
V⊥ ¼ V∥ ¼ V [44] plus a Hubbard term, whose role as well
as possible ways to introduce anisotropic couplings in
Eq. (7) we discuss below. To reach a Kondo-screened GS
one must have V > 0, i.e., V0

eg > −Vgg > 0 [37].
Discussion.—In the presence of extreme strong frus-

tration when only local-spin singlets participate in the
low-energy physics, the orbital fluctuations allow the
conduction electrons to dynamically flip the VB singlets
[see Fig. 1(b)] and stabilize a Kondo-screened phase with
HF quasiparticles. We illustrated this mechanism within a
periodic Anderson model on a frustrated TTL and proposed
an optical lattice setup that realizes this model with
SUð3Þ-symmetric AEAs by using their nuclear spins to
implement frustrated plaquettes (e.g., triangles).
Compared to the electronic KL, Eq. (3), the low-energy

model for AEAs, Eq. (7), has several peculiarities. First,
there is the Hubbard term Ugg which below half-filling
enhances phases with nonzero SUð3Þ magnetization in
Fig. 3(b). However, its magnitude is effectively damped by
the density prefactor ∼ðncÞ2. We checked that even when
nc ¼ 0.8, one needs Ugg > V to suppress the Kondo-
screened state. Hence, this term is unimportant for the
Kondo physics. Second, the Hamiltonian HA

ef has full
SUð3Þ symmetry (i.e., V⊥ ¼ V∥) that originates from the
symmetry of Eq. (5) and prohibits experimental exploration
of the phase diagram in Fig. 3. This symmetry can be
broken by a weak external magnetic field B which to the
lowest order amounts to replacing V⊥→V⊥þ½ðVgg−V 0

egÞ=
Veg�ðμe−μgÞB (μe;g are magnetic moments for e and g
atoms). Also, one might use other implementations of the
SUð3Þ Kondo effect [45], instead of our AEAs setup.
The HF phase in Figs. 2 and 3 can be detected in cold-

atom experiments using slow quantum dynamics or time-
of-flight measurements [46–48]. The KL model, Eq. (7),
can be implemented beyond 1D, which enables us to use
AEAs as controlled [because of the SUðNÞ symmetry]
quantum simulators for more complex frustrated Kondo
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
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-1  0  1

FIG. 3. Generic T ¼ 0 phase diagram of Eq. (3) [or Eq. (7) with
Ugg ¼ 0] with N ¼ 3600 sites and nc ¼ 0.8. All phase transitions
are first order. Inside the nematic phase there is a “metamagnetic”
transition between states with mc;f

1 ≠ 0, mc;f
3;8 ¼ 0 (at smaller V∥)

and mc;f
1 ¼ 0, mc;f

3;8 ≠ 0 (for larger V∥) which are separated by a
continuation of the dashed line. Inset: Noninteracting itinerant
DOS gðϵÞ ¼ ð1=8π2tÞK½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵ=4tÞ2

p
� [KðxÞ is an elliptic in-

tegral of the first kind] used to compute the phase diagram.
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lattices. Although the currently available isotopes 87Sr and
173Yb are believed to have negative exchange couplings V
[16–18], we expect that our results in Figs. 2 and 3 can be
realized with other AEAs.
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