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A scheme to utilize atomlike emitters coupled to nanophotonic waveguides is proposed for the
generation of many-body entangled states and for the reversible mapping of these states of matter to
photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces
(DFSs) for the atomic emitters with coherent evolution within the DFSs enforced by strong dissipative
coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are
mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a
photonic crystal waveguide is discussed.
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Recent work on optical emitters coupled to one-
dimensional (1D) waveguides has opened new avenues
to investigate light-matter interactions [1–20]. Particularly
promising are the setups where atoms are strongly coupled
to structured dielectrics [6–10], where large Purcell factors
have been predicted [21,22]. Furthermore, collective effects
can be enhanced by placing the atoms at particular
positions [15,16,23–29]. The combination of atomlike
emitters and nanophotonic waveguides may enable new
regimes for the interaction of light and matter, leading to
technologies that outperform current ones and qualitatively
different physics. In this work we investigate the possibility
of using atom nanophotonics interfaces to tailor arbitrary
states for propagating photons on demand, which lies at the
heart of many quantum information [30], metrology [31],
and lithography [32] methods (see Ref. [33] for a review).
We predict large fidelities even for relatively large numbers
of photons, something which has been impossible to
achieve with other platforms in the optical domain.
Our proposal uses N þ 1 three-level systems (with levels

fjgi; jsi; jeig), where one of the optical transitions
(jgi ↔ jei) is strongly coupled to a 1D waveguide [see
Figs. 1(a) and 1(b)]. We denote by P1D the Purcell factor
corresponding to that transition, i.e., the ratio of the
emission rate into the waveguide mode, Γ1D, and the
one for all other modes, Γ�. The atoms must be separated
by distances proportional to λa ¼ 2π=qðωaÞ, where qðωÞ is
the wave number determined by the waveguide dispersion
relation. Depending on their internal state, atoms may
experience a collective decay into the waveguide, or
become completely decoupled from it. The latter occurs
if they are in a decoherence free subspace (DFS) [34–36].
Our protocol consists of two steps: in the first one, we
generate certain states within the DFS, jΨDi, by driving the
atoms with lasers and using the collective quantum
Zeno effect [37–39] within the DFS with an infidelity

1 − F1 ∝ m=
ffiffiffiffiffiffiffiffi
P1D

p
, where m is the maximum number of

photons we want to generate; in the second one, a laser
pulse takes the atomic state out of the DFS so that atoms
collectively emit into the waveguide, creating the desired
state of a single propagating mode, jΨBi, with an infidel-
ity 1 − F2 ∝ m2=ðNP1DÞ.
The atom-photon Hamiltonian of these systems is given

by H¼HqbþHfieldþHI, with Hqb¼
PNþ1

n¼1 ðωaσ
n
eeþωsσ

n
ss)

and Hfield ¼
P

qωqa
†
qaq, (using ℏ ¼ 1), where ωa is the

two-level system energy,ωq is the field dispersion relation of
the 1D photonic modes, and σnij ¼ jiinhjj. We consider only
the coupling to a single polarization as justified for suitable
dielectric waveguide modes [21], that is,

FIG. 1 (color online). (a) Setup: N atoms plus 1 ancilla atom
coupled to a 1D photonic bath. The ancilla must be individually
addressed. (b) Atomic Λ scheme: the transition jgi ↔ jei is
coupled to the aq modes. A laser controls the transition jsi ↔ jei
with amplitude, Ωn and detuning Δn. Another field, Ωc, controls
jsi ↔ jgi, with frequency ωs. (c) Relevant states and steps for our
protocol: (I) generation of superpositions of symmetric Dicke
states, jDmi, by using the excited dark states jΨðmÞ

e i. (II) Flipping
jsi → jei to generate the superradiant state jSmi, which decays
rapidly (III) to the desired photonic state.
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HI ¼
X
n;q

ðgqσngea†qe−iqzn þ H:c:Þ; ð1Þ

with gq the single-photon coupling constant to the mode of
interest and where we have used the rotating wave approxi-
mation. When the 1D baths have a much faster relaxation
time scale than the atomic system, the atoms are described by
a density matrix, ρ, which in the Born-Markov limit, is
governed by a master equation [23,24,40] of the form:
dρ=dt ¼ P

n;m½ðΓ1D=2ÞeiqðωaÞjzn−zmjðσngeρσmeg − ρσmegσ
n
geÞþ

H:c:� in the interaction picture rotating with Hqb. By
appropriately choosing the atomic positions, e.g.,
zn ¼ nλa ¼ n2π=qðωaÞ, with n ∈ N, the coherent atom-
atom interactions are eliminated [41] and the effective
interaction yields a pure Dicke model [42] described by

LDðρÞ ¼
Γ1D

2
ðSgeρSeg − SegSgeρÞ þ H:c:; ð2Þ

where we defined Sij ¼
PNþ1

n¼1 σnij. One of the assets of the
Dickemodel is the emergence of subradiant and superradiant
states. The excited states with m atoms in jei that are
symmetric under permutations, denoted by jSmi, are super-
radiant with a decay rate proportional (at least) to the atom
numberN, and are unique for eachm. On the other hand, the
states satisfying SgejΨi ¼ 0 are dark states of the Liouvillian
of Eq. (2), and therefore decoupled from collective dis-
sipation. These dark states span the DFS that is highly
degenerate for m > 1.
The atomic states that must be created in the first step of

our protocol are very peculiar as (i) they must be prepared
within the DFS to avoid dissipation, and (ii) they must be
easily mapped to the appropriate superradiant states, to
generate arbitrary superpositions of the photonic wave-
guide states. Our strategy consists of first, identifying
states, denoted by jDmi, in the subspace spanned by the
ground levels g, and s, which can be mapped one-to-one to
a basis jSmi of superradiant states using a simple laser
pulse, and which in turn give rise to m photons in the
waveguide via superradiance. Then, we use a more sophis-
ticated scheme within the DFS to generate superpositions
of jDmi, which requires only m steps.
By introducing another metastable state, jsi, as

depicted in Fig. 1(b), the candidates to map to superradiant
states are the symmetric Dicke states jDmi ∝ symfjsi⊗m ⊗
jgi⊗N−mg, as they can be turned superradiant by switching
jsi → jei. Having identified the target, jDmi, we need to find
ways to build efficiently arbitrary superpositions. Previous
studies have proposed implementing one or two-qubit
universal gates within DFS [34–38], but the number of steps
increases rapidly with N, as well as using adiabatic passage
methods [43–46], limited to small excitations number m.
Here, we use the collective character of the interaction to
deterministically generate arbitrary N-qubit states for which
the number of steps is independent of the number of atoms.
The scheme that we use is depicted in Fig. 1(a): we

consider a system of N þ 1 emitters, in which we aim to

generate jDmi in the first N emitters using the ancilla as an
auxiliary state. As the jDmi’s are invariant under the
permutation of the first N atoms, we choose the control
fields with the same symmetry and the same detuning
Δn ¼ Δe for all emitters:

Hc ¼
Ωc

2
σNþ1
sg þ H:c:;

Hlas ¼
 
Ωr

2

XN
n¼1

σnse þ
Ωanc

2
σNþ1
se þ H:c:

!
þ Δe

XNþ1

n¼1

σnee;

ð3Þ
written in the interaction picture with respect to Hqb. The
HamiltonianHlas allowsus to control both the emitter state and
the coupling to the 1D reservoir, whileHc allows us to control
the atomic states of the ancilla independently of the coupling
to the 1D reservoir.We are interested in working in the regime
of strong collective dissipation, where NΓ1D ≫ Ωr;Ωanc;
Ωc;Δe. In this situation, the 1D bath is continuously mon-
itoring the collective atomic state, as in the quantum Zeno
regime [34–38], and projecting its state into the DFS of LD.
Formally, we obtain the effective dynamics within the DFS by
treating the control fields and dissipation into other decay
channels as a perturbation to the collective dissipation LD
[47]. To explain the protocol,we first consider the action of the
control fields projected into the DFS to first order, leaving the
discussion of errors due to higher orders for later.
Because of the symmetry of the problem, it is convenient

to introduce the following notation to describe any sym-
metric state over N atoms:

jFm;ki ∝ symfjsi⊗m ⊗ jei⊗k ⊗ jgi⊗N−m−kg; ð4Þ
that embeds both jDmi≡ jFm;0i and jSmi≡ jF0;mi. In
general, the DFS of the Liouvillian LD grows exponentially
with the number of atoms, but for each m, only three of
these states fulfill the permutation symmetry of our system
[47]. These states are

jΨðmÞ
s i ¼ jFm−1;0i ⊗ jsiA;

jΨðmÞ
g i ¼ jFm;0i ⊗ jgiA;

jΨðmÞ
e i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm

Nm þ 1

s
jFm−1;0i ⊗ jeiA

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nm þ 1
p jFm−1;1i ⊗ jgiA; ð5Þ

where jψiA denotes the state of the ancilla and
Nm ¼ N −mþ 1. In Fig. 2(a) we sketch the protocol
steps by a diagram of the projected Hamiltonian into the
DFS. It consists of two parts, which are applied mmax times
to reach any superposition of states over the first N atoms
jΨDi ⊗ jgiA ¼ ðPmmax

m¼0 dmjDmiÞ ⊗ jgiA with maximum

mmax excitations from the initial state jΨð0Þ
g i: (i) Use Hc

to flip the ancilla state jgiA → jsiA. This transition makes:
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jΨðm−1Þ
g i → jΨðmÞ

s i; (ii) two-photon transition jΨðmÞ
s i →

jΨðmÞ
g i. It can be shown that the dark states corresponding

to a given excitation m form an effective Λ scheme within

the DFS via the far-detuned state jΨðmÞ
e i [47]. The two-

photon transition can be made on-resonance if the inten-
sities are chosen such that jΩancj ¼ jΩrj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=Nm

p
, which is

possible because we demanded individual addressing of the

ancilla. If this condition is not imposed, the jΨðmÞ
s;g i

experience different Stark shifts that spoil the two-photon
process. The effective Hamiltonian for themth excitation is

HD ¼ ΩðmÞ=2jΨðmÞ
s ihΨðmÞ

g j þ H:c:; ð6Þ
where jΩðmÞj ¼ ðjΩrj2=ð2jΔejÞÞ½m=ðNm þ 1Þ�. The combi-
nation of both steps gives rise to a ladderlike structure [see
Fig. 2(a)], which can be used to build any arbitrary

superposition states of jDmi from the ground state jΨð0Þ
g i

with mmax steps each. The necessary pulse sequence can be
obtained by calculating the inverse evolution from the
target to the initial state and successively removing
excitations in the ladderlike structure [39].

Another advantage of our protocol is that it can be used
to generate a superposition of photonic states in the 1D bath
by dissipative means once we have jΨDi. To make sure the
ancilla atom can be neglected, we flip the ancilla state
jgiA → jsiA and apply no fields to it. In order to map to the
superradiant state of N atoms, we apply a fast resonant π
pulse (Δe ¼ 0 andΩr ≫ NΓ1D) on the N emitters to switch
all jsin → jein, thus generating the superposition of
jSmi ∝ symfjei⊗m ⊗ jgi⊗N−mg. Because of their super-
radiant character, the jSmi decay completely to 1D-
reservoir modes. Because HI conserves the number of
excitations, the superradiant state ofm excitations decays to
the Fock-state of m photons [47]:

jSmi → jmfqgi≡
X
fqg

AfqgðtÞ
m!

a†q1…a†qm jvaci; ð7Þ

where fqg ¼ fq1;…; qmg is the set of relevant momenta
which run over the whole Brillouin Zone qi ∈ B:Z. The
scattering amplitude AfqgðtÞ is calculated using a general-
ized input-output formalism [47,52–54] and quantum
regression theorem [55]:

AfqgðtÞ ¼
Ym
r¼1

ig
ffiffiffiffiffiffiffiffi
rNr

p
e−iωqr t

iðPr
l¼1 ωql − rωaÞ þ rΓ1DNr=2

þ P½fqg�

ð8Þ
for sufficiently large times t ≫ 1=NmΓ1D when the atomic
state has decayed completely and defining P½fqg� as all the
permutations of fqg. The only dependence on t enters

through e−i
P

m
r¼1

ωqr t, which describes the center-of-mass
motion of the wave packet when going to the real space. In
the low excitation regime, one can either use the Holstein-
Primakoff approximation [56] or directly substitute
Nm → N in the expression above, arriving at

AHP
fqgðtÞ ¼

Ym
r¼1

e−iωqr tig
ffiffiffiffiffiffi
rN

p

iðωqr − ωaÞ þ Γ1DN=2
; ð9Þ

that has a Lorentzian shape centered at ωa with bandwidth
Γ1DN=2. Substituting AfqgðtÞ → AHP

fqgðtÞ into the definition

of jmfqgi, yields a linear Fock state denoted by jmHP
fqgi. In

principle, the emission into the waveguide is bidirectional
(�q), but combining both fields in phase, e.g., by placing a
mirror at an appropriate distance, or by engineering the
atom-photon coupling appropriately [3,4,14], it is possible
to achieve emission in one direction only. Furthermore, by
shaping the pulse, ΩrðtÞ (within a bandwidth ≲NΓ1D) we
generate any desired shape of the output photonic state,
e.g., to create a time-symmetric photonic state [57] that
ensures the reversibility of the process when mapping the
photonic state to another sample. Moreover, because
of the linearity of the calculation of Afqg with respect to
the input state [47], superpositions of atomic states decay to
superpositions

FIG. 2 (color online). (a) Preparation of arbitrary superpositions
of jDmi. Alternating between σx gates on the ancilla and two-

photon transitions via jΨðmÞ
e i builds up excitations step by step.

(b) [(c)] Error, 1 − F, as a function of P1D for generating jDmi
[jΦmi ¼ ð1= ffiffiffi

2
p ÞðjD0i þ jDmiÞ] up to mmax ¼ 5 excitations. The

dots correspond to the numerical fidelities, whereas the solid lines
depict the 1=

ffiffiffiffiffiffiffiffi
P1D

p
scaling.
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jΨDi →
Xmmax

m¼0

dmjSmi → jΨBi ¼
Xmmax

m¼0

dmjmfqgi; ð10Þ

that will be generated in a single-mode wave packet, as
required for most applications [33], as long as N ≫ m
because hmfqgjmHP

fqgi ≈ 1 −m3=ð20N2Þ [47].
So far, we have only discussed the ideal protocol without

considering, e.g., spontaneous emission into all other
modes with rate Γ�. For the error in the preparation of
the many-body entangled state, we derive an error rate ϵ
from perturbation theory, which, together with the time of
the operation τ, gives an approximation of the fidelity,
F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΨDjρðτÞjΨDi
p

≈ 1 − τϵ, with respect to the target
state jΨDi. The dominant errors assuming N ≫ m and
Γ1D ≫ Δe ≫ Γ� come from [47] (i) the spontaneously

emitted photons from jΨðmÞ
e i to decay channels other than

the waveguide, which scales as ϵ1 ≈ Γ�mjΩrj2=ð4NΔ2
eÞ,

and (ii) from the photons emitted from the small popula-
tions of superradiant states. We estimate the rate of these
errors by taking into account the second order corrections
of the projected Hamiltonian which are finally given by
ϵ2 ≈ NΓ1DfmjΩrj2=½4Δ2

e þ ðNΓ1DÞ2�g. Summing up, the
error for the mth step of the process, which takes
τ ¼ ðπ=jΩðmÞjÞ ≈ 2πNΔe=ðmjΩrj2Þ for full population
transfer, is

1 − FðmÞ
1 ≈

π

2

�
Γ�

Δe
þ Δe

Γ1D

�
; ð11Þ

that is optimized for Δe;opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Γ�Γ1D

p
, which yields a

scaling: 1 − FðmÞ
1;opt ∝ 1=

ffiffiffiffiffiffiffiffi
P1D

p
. To create a superposition

jΨDi, we requiremmax steps. Thus, the total error of the first
part of the protocol is 1 − F1 ∝ mmax=

ffiffiffiffiffiffiffiffi
P1D

p
, that can be

improved via postselection conditioned on detecting no
photons in the waveguide [47].
To validate the scaling analysis, we study numerically the

preparation of two relevant sets of states: (i) the jDmi; (ii) the
superpositions jΦmi ¼ ð1= ffiffiffi

2
p ÞðjD0i þ jDmiÞ. Because of

the imposed symmetry conditions the relevant Hilbert space
depends only on the maximum number of excitations,mmax,
while the N only enters on the two-photon resonance
condition, that fixes ΩðmÞ [47]. With this restriction,
we use a non-Hermitian evolution governed by Heff ¼
Hlas þHc − iΓ1DSegSge=2 − iΓ�See=2. To generate the
jDmi, the pulse sequence consists of a complete transfer
of populations in each step of Fig. 2(a), which is ensured by
fixing the time of interaction, t, to tΩcðΩðmÞÞ ¼ π for the
microwave (Raman) transitions, whereas for the jΦmi the
pulse sequence is calculated numerically. In Figs. 2(b) and
2(c), we show the numerical fidelities obtained when fixing
the off-resonant transition to the optimal Δe;opt, confirming
that our arguments give the correct scaling ∝ 1=

ffiffiffiffiffiffiffiffi
P1D

p
.

Finally, we estimate the fidelity of the photonic state
considering the effect of Γ�. For a superradiant state

with m excitations the error rate is mΓ�, while the average
time to decay is 1=ðNΓ1DÞ, which yields an error of

1 − FðmÞ
2 ¼ 2mΓ�=ðNΓ1DÞ. When there are mmax excita-

tions in the system, the total fidelity of the process is

F2 ≈ 1 −
m2

maxΓ�

NΓ1D
: ð12Þ

The dissipative character of this mapping allows for the
efficient generation of (arbitrary superpositions of) pho-
tonic states, e.g., Fock states, that typically are generated
probabilistically [58–60] or via nonlinear interactions [39].
An appealing platform to implement these ideas is cold

atoms trapped near photonic crystal waveguides [6–10],
where Γ1D=Γa ¼ ξngσ=ð2AmÞ, where ng ¼ c=vg is the
group index, σ ¼ 3λ20=ð2πÞ the radiative cross section,
Am the effective mode area, Γa the vacuum emission rate,
and ξ a cavity enhancement factor. Current values for Cs
atoms (λ0 ¼ 894 nm, Γa=2π ¼ 5.02 MHz) and SiN alli-
gator waveguides [6,10] have Am ≈ 0.2 μm2, ng ≈ 10,
ξ ∼ 5, and Q factors of 106. Depending on the reduction
of spontaneous emission, Γ� ¼ αΓa, these numbers lead to
P1D ≈ 50=α. Intrinsic losses in the dielectric and reduced vg
set finite propagation lengths of waveguide modes,
Lprop=λa ≈Q=ð2πngÞ, which is > 104 for state-of-art SiN
values [6,10]. Retardation effects also set a maximum
number of atoms for superradiant atom-photon mapping,
e.g., assuming a separation λa=2, then NΓ1D < 2vg=ðNλaÞ,
which for current structures leads to N ≲ 500 atoms.
Possible ways of avoiding retardation are to increase Γ1D
by increasing ξ (not ng) [10]; or by doing the atom-photon
mapping off-resonantly, which decreases Γ1D while keep-
ing P1D constant. Other potential problems that we
neglected are (i) imperfect atomic separations limited
ultimately by center of mass wave packets and atomic
motion and (ii) group velocity dispersion that distorts the
propagating wave packet. In Ref. [47], we estimate under
which conditions they can be neglected; however, a
thorough study should be done for each implementation
to minimize the impact on the protocols described.
In conclusion, we have presented a protocol to generate

deterministic superpositions of many-body entangled
atomic states in the presence of strong dissipation.
Remarkably, the errors in the preparation of complex
superposition states increase only linearly with the number
of excitations of the system and inversely with the square
root of the Purcell factor. Furthermore, we have shown how
to map these atomic states to photonic states with a very
efficient scaling that depends linearly on the inverse
collective Purcell Factor and how to engineer a time-
symmetric wave packet that guarantees the reversibility
of the mapping.
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