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We investigate the theoretical problem of the photoelectron cutoff change in periodical structures
induced by an infrared laser field. We use a one-dimensional Kronig-Penney potential including a finite
number of wells, and the analysis is fulfilled by resolving the time-dependent Schrödinger equation.
The electron spectra, calculated for an increasing number of wells, clearly show that a plateau quickly
appears as the periodic nature of the potential builds up, even at a moderate intensity (10 TW=cm2).
Varying the intensity from 10 to 30 TW=cm2 we observe a net increase of both the yield and accessible
energy range of the ionization spectrum. In order to gain insight into the dynamics of the system at these
intensities, we use an analytical approach, based on exact solutions of the full Hamiltonian in a periodic
potential. We show that the population transfers efficiently from lower to upper bands when the Bloch and
laser frequencies become comparable. The model leads to a quantitative prediction of the intensity range
where ionization enters the nonperturbative regime. Moreover, it reveals the physics underlying the
increase of the photoelectron energy cutoff at moderate intensities, as observed experimentally.

DOI: 10.1103/PhysRevLett.115.163602 PACS numbers: 42.50.Hz, 32.80.Wr, 36.40.-c, 79.60.-i

When an atom is submitted to an intense and short laser
field it gives rise to nonlinear effects such as high-order
harmonic generation (HHG) [1] or above-threshold ioniza-
tion (ATI) [2]. Over the past two decades, HHG from noble
gases has become a practical source of ultrashort pulses in
the UVand extreme ultraviolet domains (see Refs. [3,4] for
reviews). HHG resulting from a high intensity laser
interacting with atoms is well described by the semi-
classical three-step model, called the simple man model
[5–8]. This model predicts the single-atom or small
molecule maximum photon energy of the harmonic spec-
trum at Ip þ 3.2Up where Ip is the ionization potential of
the atom.Up is the ponderomotive energy of the electron in
the laser field (Up ¼ ðI=4ω2Þ, where I is the peak intensity
and ω is the laser frequency, expressed in a.u.) when
linearly polarized light is used. Regarding ATI in atoms, the
above cited three-step model also predicts the electron
energy distribution. ATI spectra can be described by a
combination of direct and rescattering (indirect) ionization
processes. The maximum electron kinetic energy for direct
and rescattering processes are 2Up and 10Up, respectively.
Experimentally, both HHG and ATI high-energy spectra
exhibit a structure called the plateau with the expected
cutoff in agreement with theoretical predictions [9–13].
Alternatively, HHG spectra generated in a bulk crystal
show a plateau cutoff that scales linearly with the electric
field amplitude of the drive laser. In order to explain this
behavior, a different mechanism than the usual three-step
model has been suggested involving a classical field-driven
Bloch oscillation dynamics [14,15]. Similarly, ATI spectra
in semiconductors show a wide plateau with high energy
electrons, having a cutoff that is much more extended than

the 10Up limit observed in atoms. A typical example is
given in Ref. [16] where the CsI crystal irradiated by an
800 nm femtosecond laser at 3 TW=cm2 shows a cutoff at
124Up (24 eV). It is worth noting that a similar trend exists
for other crystals [17], showing the universality of the
process. The heating was generally considered as a result
of a cascade of phonon-assisted photon absorption in the
conduction band (e.g., Ref. [18]) but this process explains
only the peak in the low energy range (up to a few eV)
of the spectrum [19]. Resolving the time-dependent
Schrödinger equation (TDSE) in the basis of Bloch
functions in the conduction band, we have been able to
show that the electron transfer from one band to the upper
ones is already effective at intensities of a few terawatts
(TW) [20]. Nevertheless the physical mechanism under-
lying these transitions remains unclear. More generally, it is
of crucial interest to clarify, as has been done in the case of
atoms and molecules, the relevant parameters governing the
transition from perturbative to nonperturbative behavior in
the ionization of quasiperiodic and periodic structures
submitted to low-frequency laser fields. In order to have
a better insight into the role of the periodicity of the system
in ATI spectra we use a multiwell potential with one active
electron, an approach that has been used to model a wide
number of physical systems (see Ref. [21], and references
therein). Atomic units are used throughout the Letter unless
stated otherwise.
We use a one-dimensional potential VðxÞ composed ofN

wells defined as follows

VðxÞ ¼ −U0 ð1Þ
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for na − ðb=2Þ ≤ x ≤ naþ ðb=2Þ and VðxÞ ¼ 0 else-
where. Here n ¼ −N=2;…;−1; 1;…; N=2, and for N ¼
∞ one recognizes the Kronig-Penney model with rectan-
gular potentials of width b separated by a distance a, which
is the lattice period. The total number of wells involved in
the potential is N, which is chosen even for symmetry
properties of the potential imposed by the boundaries of the
numerical box. We choose b ¼ 3

4
a, a ¼ 8.6 a.u., and U0 ¼

0.015 a.u. in order to mimic the CsI crystal band structure
[20]. The corresponding band energy diagram, calculated
for N ¼ ∞, is given in Fig. 1. We consider the time
evolution of an electron under the influence of an electro-
magnetic field linearly polarized. The TDSE may be
written, in the Coulomb gauge and dipole approximation,

HΨðx; tÞ ¼
�½Pþ AðtÞ�2

2
þ VðxÞ

�
Ψ ¼ i

∂Ψ
∂t : ð2Þ

P is the electron momentum operator. AðtÞ is the electro-
magnetic field vector potential of central pulsation ω and
amplitude E0=ω. The potential vector is chosen so that
Aðt ¼ 0Þ ¼ AðTÞ ¼ 0, with T the end of the pulse. Thus,
the relation AðTÞ ¼ −

R
T
0 dtEðtÞ ¼ 0 [where EðtÞ is the

electric field] is satisfied, ensuring that there is no static
field component that could lead to any problem related to
gauge invariance [22]. The TDSE is solved numerically.
The initial state (at t ¼ 0) is the eigenstate of lowest
eigenenergy of the Hamiltonian H with no field. This
wave function has a momentum distribution centered at
k ¼ 0 and a negative eigenenergy, close to 0. The split-
operator and the Crank-Nicolson methods are used to
evaluate the evolution operator; the numerical convergence

is checked using the usual procedure, i.e., by varying the
grid parameters. Once the wave function has been calcu-
lated at the end of the pulse, the photoelectron spectrum is
extracted by using the so-called resolvent method (see
Ref. [23] and references therein). It is worth recalling that
the TDSE includes intraband and interband transitions, as
well as (ac) Stark shifts, which slightly distort the bands at
10 TW=cm2 [20].
We first plot the ionization density probability as a

function of the number of wells. The results are presented
in Fig. 2. In the case where one well is involved (i.e.,
corresponding to the atomic case) we clearly observe a
series of ATI peaks of decreasing magnitude, followed by a
change of slope and a cutoff at about 10Up (6–7 eV). The
Keldysh parameter γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ip=2Up
p

[24] (we recall that Ip is
the atomic ionization potential) is smaller than 1 (γ ¼ 0.24)
indicating that the physics is deeply in the so-called
tunneling regime.
When the number of wells is increased, a clear change of

the photoelectron spectrum is observed: a first plateau with
a cutoff at about 7 eV is observed, followed by a second
plateau with a cutoff at about 50 Up (30 eV). The
periodicity condition, for a given energy range, is numeri-
cally checked by increasing N until convergence of the
ionization density probability. For example, in the energy
region up to 35 eV, a saturation (i.e., a convergence) of the
ionization density probability is observed when the number
of wells goes over N ¼ 10. This means that for this
energy range, the Brillouin zone involved in the physics
is equivalent to having an infinite number of wells.
Narrower structures show up in the photoelectron spectrum
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FIG. 1 (color online). Plot of the band diagram corresponding
to half of the first Brillouin zone k ¼ ½0; π=a�, assuming the
Kronig-Penney potential defined in the text and an infinite
number of wells. Note that the interval defined by k ¼
½−π=a; 0� is simply the symmetric representation of k ¼ ½0; π=a�.

FIG. 2 (color online). Plot of the density probability as a
function of the electron energy for various number N of wells.
The laser parameters are an intensity of I ¼ 10 TW=cm2, a
central wavelength of 800 nm, and a pulse duration of 20 fs
FWHM using a sin2 envelope. The ponderomotive energy is
Up ¼ 0.6 eV. The one well case has been calculated for 10 fs
FWHM and a potential width of twice the one for the multiwell
case in order to get similar ionization yield.
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at larger energies. These features are better contrasted in
Fig. 3 (indicated by arrows) at higher intensities for reasons
that will be explained later. The figure shows the photo-
electron spectrum density probability for different inten-
sities with a fixed number of wells (N ¼ 14). We have
verified that, for N ¼ 14, the condition of periodicity is
reached over the energy range of 0–108 eV. In this graph a
clear breakup of the classical 10Up cutoff is observed for
intensities higher than I ¼ 3 TW=cm2. For example, at
30 TW=cm2 (Up ≈ 1.9 eV), peaks are observed at 7.7,
29.2, 65.5, and 96.6 eV. This confirms that a critical
intensity exists above which the ATI spectrum shows a
nonperturbative behavior. The narrow peaks are related to
the Bragg diffraction (corresponding to the crossing
point of the energy diagram at k ¼ 0 in Fig. 1); in other
words they result from the coherent contribution of the
different centers and are defined at the energy positions
En ¼ ð2π2=a2Þn2 (n ¼ 1; 2;…). This leads to peaks
expected at EnðeVÞ ≈ 7.26n2, in close agreement with
the spectrum of Fig. 3 (except for the structure of very
low magnitude at 96.6 eV). Incidentally, it is worth noting
that the effect of the spatial dependence of the intensity
should not affect the presence of Bragg peaks since they are
independent of I.
In order to explain the physics underlying the evolution

of the spectra in the range 10–30 TW=cm2 we present
below a theoretical approach, derived from Ref. [25], based
on few state expansion and leading to simple analytical
expressions of the transition amplitudes. We obtain Ψðx; tÞ
from Ψðx; 0Þ by employing an eigenfunction expansion
whose components are solutions of

HΦiðx; tÞ ¼ ϵiðtÞΦiðx; tÞ: ð3Þ
ϵiðtÞ≡ ϵi(kðtÞ) where ϵiðkÞ is the energy band solution of
the central equation as depicted in Fig. 1. kðtÞ is the

electron momentum. Its dependence with t is deduced from
the requirement of periodic boundary conditions [25,26].
This leads, in agreement with the classical equation of
motion, to

dkðtÞ
dt

¼ dAðtÞ
dt

¼ −EðtÞ ð4Þ

and

kðtÞ − AðtÞ ¼ kðt ¼ 0Þ: ð5Þ

AðtÞ ¼ −ðE0=ωÞ sinωt and EðtÞ defines the electric field
vector of amplitude E0.
We now consider the perturbative transition from dressed

band l to dressed band m defined in Eq. (3). The first order
perturbation theory, applied on the dressed states, gives rise
to the amplitude transition tm;l expressed as

tm;lðtÞ ∼
Z

t

0

dt0pml(kðt0Þ)eiSðt0Þ;

where Sðt0Þ ¼
Z

t0

0

½ϵm(kðt00Þ) − ϵl(kðt00Þ)� ω�dt00: ð6Þ

pml(kðt0Þ) is the matrix element of the operator P between
the bandsm and l at time t0. We consider first the case of the
transition from band 1 to band 2 with the calculation of
t2;1ðtÞ. In agreement with the TDSE calculations we
assume that initially (i.e., at t ¼ 0) the population is in
band 1 and centered at k ¼ 0. From Eq. (6) it is clear that
the transition efficiency relies on the stationarity of the
phase condition of the integrand. Thus, we look at the
values of kr¼kðtrÞ satisfying the condition ð∂S=∂tÞt¼tr¼0,
which is

ϵ2ðkrÞ − ϵ1ðkrÞ − ω ¼ 0; ð7Þ

hereafter called the resonance condition. The evaluation of
kr requires the knowledge of the dispersion functions ϵ2ðkÞ
and ϵ1ðkÞ within the first Brillouin zone. In our example kr
can be deduced from Fig. 1, where the resonance position
kr is indicated by the lower red arrow. Then, if we consider
that kðt ¼ 0Þ ¼ 0, the relation kr ¼ −ðE0=ωÞ sinωtr
deduced from Eq. (5) shows that the resonance condition
is periodically fulfilled provided that the field amplitude
satisfies E0 ≥ krω. In our case this leads to a minimum
intensity of 9 TW=cm2. Considering now the transition
from band 2 to band 3, the transition amplitude is
maximum for ϵ3ðk0rÞ − ϵ2ðk0rÞ − ω ¼ 0 (k0r is indicated by
the upper red arrow in Fig. 1). This is realized for a
minimum intensity of 13 TW=cm2. Incidentally, we note
that this value of the intensity also ensures an efficient
transfer from band 1 to band 2. It must be also noted that
once a part of the wave function reaches the crossing point
at k ¼ 0, a diabatic transition occurs due to the velocity

FIG. 3 (color online). Plot of the density probability as a
function of the electron energy for different peak intensity (I).
The laser parameters are a central wavelength of 800 nm and a
pulse duration of 20 fs using a sin2 envelope. The number of well
is fixed at N ¼ 14.
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acquired by the wave packet during the interaction with the
laser pulse, as indicated by the curved arrow in Fig. 1. As a
matter of fact the population oscillates within the whole
Brillouin zone ½−π=a; π=a� under the action of the field. We
only show half of the first Brillouin zone in Fig. 1; a mirror
process manifests for negative values of k. The generali-
zation to transitions between upper bands is straightfor-
ward. One can easily show that, when kr reaches the limit
of the Brillouin zone, i.e., kr ¼ �π=a, the resonance
condition is always fulfilled (the successive bands are
quasidegenerate at the limits of the Brillouin zone).
According to the relation kr ¼ −ðE0=ωÞ sinωtr the latter
equality requires E0 ≥ krω to be fulfilled, or introducing
the Bloch frequency ωb ¼ aE0, this condition is written
ωb ≥ πω. In our particular case, this is realized for a
minimum intensity of 14 TW=cm2. For I ≥ 14 TW=cm2

the electron can “jump” from band 1 to any upper band
through successive transitions, occurring at different times,
i.e., each time the resonance condition ϵmðkrÞ − ϵlðkrÞ �
ω ¼ 0 is realized. These considerations fully agree with the
results of the TDSE calculations shown in Fig. 3 where a
net increase of ionization yield over a large range of
electron energies for intensities ranging from 10 to
30 TW=cm2 is observed. We have checked that, increasing
the intensity from 10 to 20 TW=cm2, the peaks associated
with the population in bands 2, 3, and 4 appear succes-
sively. At 30 TW=cm2 the whole spectrum is populated and
all peaks are clearly pronounced (see Fig. 3).
We are now able to give a physical picture of the process.

First, we recall that ωb, the Bloch frequency, refers to the
oscillation of the electron within the Brillouin zone under
the action of a static electric field E0 [27,28]. When the
field intensity reaches the value of 9 TW=cm2, band 2 is
populated according to the scheme shown in Fig. 1.
Increasing the intensity, bands 3 and 4 are populated
following a similar scheme. For an intensity of
14 TW=cm2, k reaches the limit�π=a of the Brillouin zone,
and we enter in a complex ionization regime where the wave
packet dynamics undergoes Bloch oscillations within the
bands while the laser field varies slowly. At the same time the
population transfers efficiently from one band to another
close to the limits of the Brillouin zone. Somehow one can
make a parallel with the case of tunnel (nonperturbative)
ionization in atoms, which is expected to dominate when
γ < 1, i.e., a situation of tunnel ionization in a quasistatic
field. In the case of quasiperiodic systems, we have shown
that the physics of ionization is governed by the ratio of the
field frequency over the Bloch frequency ω=ωb, which
indicates the limit between the perturbative and nonpertur-
bative regime. The latter becomes dominantwhenω=ωb < 1.
Note that in the limit of a static field (ω ¼ 0) the situation
tends to the nonperturbative tunneling described by the
seminal paper of Zener [29]. As amatter of fact, for intensities
larger than few tens of TW=cm2 interband couplings become
stronger and the analytic treatment leading to the transition

amplitude (6) should be carefully considered. Indeed, the
approach leading to Eq. (6) is nonperturbative in the sense
that it relies on the exact treatment of each Bloch function in
the electromagnetic field [Eq. (3)], but the interband
coupling is treated perturbatively.
In conclusion, we have uncovered an efficient mecha-

nism that populates the bands of a quasiperiodic potential;
it overtakes perturbative multiphoton ionization when the
Bloch frequency ωb satisfies ωb ≈ πω. This directly leads
to a simple quantitative evaluation of the minimum inten-
sity required for an efficient population transfer between
the lower (initially populated) band to the upper ones. In
our case (a ¼ 8.6 a.u.), this mechanism is predicted at the
rather low intensity of 9 TW=cm2. This is in full agreement
with the TDSE calculations, which show a rich ATI
spectrum for intensities of the order of 10–30 TW=cm2,
with electron peaks well identified up to 50Up, well above
the cutoff predicted by classical models in atoms.
Furthermore, given the simplicity of the 1D model, one
can consider that the comparison with the experiment
evoked in the introduction (which shows at 3 TW=cm2

an electron spectrum dominated by a broad and high
structure at low energy, followed by a plateau with a cutoff
at 24 eV [16]) is reasonably good. Indeed, the density of
states in the conduction band decreases with energy as
E−1=2 in 1D while it increases like E1=2 in 3D, making the
absorption of photons more efficient in the latter case [17].
Note that, in 3D, other factors like the orientation of the
crystal with respect to the laser field polarization should be
taken into account since the lattice periodicity varies with
the direction considered in the crystal, thus influencing the
position of the Bragg structures. Besides quantitative
predictions, the model gives a clear insight into the physics
underlying the ATI process: under the action of the
electromagnetic field, the electron gains momentum along
a band and “jumps” to an upper one, close in energy, when
it reaches the limit of the Brillouin zone. In addition, with
the recent work on HHG evoked in the introduction, our
findings confirm that the field driven oscillations along the
bands play a crucial role in nonlinear processes and that the
Bloch frequency is a key parameter in this context. This is
of prime interest to understand the behavior of complex
systems involving a finite number of potential wells, like
clusters or nanostructures submitted to TW-IR fields, in
which the properties presented in this work are then
expected to appear.
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