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We study dynamical phases of a driven Bose-Einstein condensate coupled to the light field of a high-Q
optical cavity. For high field seeking atoms at red detuning the system is known to show a transition from a
spatially homogeneous steady state to a self-ordered regular lattice exhibiting superradiant scattering into
the cavity. For blue atom pump detuning the particles are repelled from the maxima of the light-induced
optical potential suppressing scattering. We show that this generates a new dynamical instability of the self-
ordered phase, leading to the appearance of self-ordered stable limit cycles characterized by large amplitude
self-sustained oscillations of both the condensate density and cavity field. The limit cycles evolve into
chaotic behavior by period doubling. Large amplitude oscillations of the condensate are accompanied by
phase slippage through soliton nucleation at a rate that increases in the chaotic regime. Different from a
superfluid in a closed setup, this driven dissipative superfluid is not destroyed by the proliferation of
solitons since kinetic energy is removed through cavity losses.
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The experimental realization of strong collective coupling
between a large number of (ultra)cold atoms and the
electromagnetic field of Fabry-Perot cavities [1–8], nano-
photonic fibers [9–11], or photonic crystals [12] opens up
new interesting routes both in the field of quantumoptics and
condensed matter physics. From the latter point of view, the
interesting new ingredient is provided by very well control-
lable strong long-range photon-mediated atom-atom inter-
actions appearing due to the backaction of even a single atom
onto the light field. Strong long-range interactions can indeed
lead to several intriguing phenomena [13,14] and are crucial
in many intensively explored condensed matter phases, like
supersolids [15] or topological states [16]. What is more,
differently from typical condensed matter situations, these
light-mediated interactions are in general (i) retarded, since
the photon field owns intrinsic time scales that can be made
comparable with atomic scales, and (ii) nonconservative,
since the system is typically driven and dissipates energy
through atomic spontaneous emission and photon losses
through the cavity mirrors.
A striking consequence of cavity field mediated inter-

actions is the appearance of self-ordered phases [17–24]
where the particles break a translation symmetry by
forming a spatial pattern determined by a characteristic
interaction length scale. This phenomenon has been
observed experimentally both for a thermal gas [1,6] and
an ultracold Bose-Einstein condensate (BEC) [5,7] coupled
to a standing-wave mode of an optical cavity as sketched in
Fig. 1. In the regimes considered so far, a thermal gas and a
BEC share the same qualitative behavior [25]. The self-
ordering of a BEC can be closely mapped to the super-
radiant transition of the famous Dicke model ofN two-state
atoms coupled to a single cavity mode [5,26,27].

In this work, we study a new regime of quantum gas
cavity QED [28], where the self-ordering phase transition is
tight to dynamical instabilities. This novel behavior appears
upon a rather innocent looking change of operating con-
ditions, namely, by choosing the frequency of the driving
laser larger than the atomic internal transition frequency
(blue detuning). In this regime the atoms are low field
seekers as opposed to high field seekers in the typically

FIG. 1 (color online). A Bose-Einstein condensate (blue sur-
face) trapped inside an optical resonator is laser driven with a
Rabi frequencyΩ. The laser frequency is blue detuned byΔa with
respect to an internal atomic transition g↔e and by Δc with
respect a standing-wave cavity mode ∼ cosðkcxÞ defining the
characteristic recoil frequency ωR ¼ ℏkc=2m with atomic mass
m. The coupling between a single atom and the cavity mode has a
strength g0. For large Δa ≫ ðΔc; κ; g0;ωRÞ, with κ being the
cavity linewidth due to leakage out of the mirrors, the dispersive
regime is reached. Atoms experience negligible spontaneous
emission and an optical potential (orange surface) arising from
the interfering cavity and pump fields [see Eq. (1)].
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considered red detuning case (see Fig. 1). Naively, one
would expect that this prevents any self-ordering as the
atoms are pushed towards field minima, where light
scattering is suppressed. Surprisingly, a closer look reveals
that the complex interplay of collective coherent scattering
and optical dipole forces still can generate a self-ordered
phase at sufficient pump strength. However, the particles
are now localized at cavity field nodes and this order gets
dynamically unstable again at only a somewhat higher
critical pump intensity, as illustrated in Fig. 2.
Interestingly, this instability does not simply lead to

heating and disintegration of the order, but we find the
emergence of limit cycles, whereby the condensate performs
large periodic self-sustained oscillations between different
ordered patterns. The atomic density oscillations are tightly
coupled to the oscillation of the cavity field with the same
frequency, as shown in Fig. 4. This provides a built-in
nondestructive monitoring tool of the nonlinear dynamics.
By further increase of the drive strength the limit cycles turn
into chaotic dynamics by doubling their period (see Fig. 3).
Dynamical instabilities toward limit cycles evolving into

chaos have been observed with nanomechanical oscillators
coupled to light [30–32]. Limit cycles have been studied
within theopenDickemodel [33],where chaos appears in the
closed-system limit [34–36]. Self-sustained oscillations of a

BEC inside a driven cavity have been observed [37] and
shown to be very well described through an optomechanical
model. In the same setup, a transition to chaos has also
been predicted [38], analogous to the one appearing with a
nonlinear dielectric medium [39]. Recently, superfluid
Josephson dynamics of a BEC coupled to a driven cavity
have also been theoretically studied [40]. Self-organized
criticality and chaos have been observed with 4He [41].
Here, we show how the dynamical self-ordered regimes of

large nonlinear excitations let the peculiarities of the BEC
emerge clearly and prevent an understanding of the system
via (generalized) optomechanical models. In particular, once
direct short-range atom-atom interactions are taken into
account, the superfluid nature of the BEC manifests itself
through the onset of phase slippage dynamics [42–45],
whereby the condensate lowers the kinetic energy stored
in the phase of the macroscopic wave function by creating
phase singularities in the form of nonlinear dispersive waves
(solitons in our one-dimensional model). While phase slips
take place periodically in the limit-cycle phase, they appear
irregularly and at a much faster rate in the chaotic regime, as
illustrated in Fig. 4. Interestingly, different from a superfluid
in a closed system where phase-slip proliferation eventually
destroys the superfluid, here the dissipation through cavity
losses counteracts this heating process by subtracting energy
from the system.

(a)
(b)

FIG. 2 (color online). (a) Nonequilibrium phase diagram as a
function of the effective pump strength η ¼ ffiffiffiffi

N
p

g0Ω=Δa and the
detuning Δc, for κ ¼ 10ωR, U0N ¼ 12.1ωR, and gaa ¼ 0. The
color scale indicates the growth rate Reω of the most unstable
collective excitation mode above the steady state. The time
evolution of the cavity mode amplitude α is shown in (b), where
panels I, II, and III correspond to the points marked in the phase
diagram of (a). Four different phases emerge. In the normal phase
(N) the steady state is an empty cavity with a homogeneous
condensate. In the self-ordered phase (S-O) the steady state is
stable and has a finite α accompanied by the corresponding
condensate density modulation in space. In the self-ordered limit
cycle (S-O-L-C) phase the steady state is unstable and evolves
into periodic self-sustained oscillations of large amplitude about a
finite value of α. At every time during the oscillation the
condensate is self-ordered, i.e., has chosen the density modula-
tion giving rise to the instantaneous cavity amplitude. In the self-
ordered chaotic phase (S-O-Chaos) the collective oscillations lose
their periodicity. The transition from limit cycles to chaos takes
place by period doubling, as illustrated in Fig. 3.

(a)

(b)

(c)

FIG. 3 (color online). Transition from limit cycles to chaos. The
Fourier transform of the cavity amplitude time oscillations (left
column) is shown together with the condensate wave function
recurrence [29] Rðt1; t2Þ ¼

R
dxjψðx; t1Þ − ψðx; t2Þj2 (middle

column). For the same parameters as in Fig. 2, results are shown
for three different pump strengths: (a) η ¼ 9.5ωR, (b) η ¼ 10ωR,
and (c) η ¼ 11ωR at Δc ¼ 4ωR. The spectra clearly show period
doubling [between (a) and (b)] before the onset of the noisy
background in (c). This indication for the appearance of chaos is
confirmed by the large-scale structures in the recurrence R, as
opposed to the stripes characterising a periodic behavior, visible
in (a) and (b). In the latter, period doubling shows up as further
small-scale structures perpendicular to the stripes in R.
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Our findings introduce a new scenario where nonlinear
chaotic dynamics, self-ordering, and superfluidity appear
together in a driven or dissipative system, bridging between
the optomechanics or nonlinear optics and condensed
matter communities.
As sketched in Fig. 1, we consider an ultracold atomic

gas trapped along the axis of a single mode of a Fabry-Perot
cavity. The gas is illuminated with coherent light that
is blue detuned to an atomic transition. Corresponding
experiments with BECs of ultracold atoms [5,7] have been
shown to be well described by coupled classical field
equations [18] describing the mean-field dynamics of the
BEC with the Gross-Pitaevskii equation [46]

iℏ∂tψðx;tÞ¼
�
−
ℏ2∂2

xx

2m
þgaajψðx;tÞj2þℏU0jαðtÞj2cos2ðkcxÞ

þ2ℏðη=
ffiffiffiffi
N

p
ÞRe½αðtÞ�cosðkcxÞ

�
ψðx;tÞ ð1Þ

and the cavity field by its coherent component dynamicsαðtÞ:

i∂tαðtÞ ¼
�
−Δc − iκ þU0

Z
dxjψðx; tÞj2cos2ðkcxÞ

�
αðtÞ

þ ðη=
ffiffiffiffi
N

p
Þ
Z

dxjψðx; tÞj2 cosðkcxÞ: ð2Þ

The BEC wave function ψðx; tÞ is normalized to N and the
motion of the particles with mass m is restricted along the
cavity axis x upon assuming additional trapping in the other
directions. This can be easily achieved in ultracold atom
experiments [47]. Correspondingly, the direct atom-atom
interaction strength gaa is the effective coupling for the
one-dimensional problem [46]. U0 ¼ g20=Δa is the potential
depth per photon felt by an atom as well as the energy shift of
the cavity resonance per atom [see Eq. (1)]. The terms
containing η=

ffiffiffiffi
N

p ¼ g0Ω=Δa introduce a further optical
potential for the atoms and an effective pump term for the
cavity field. Finally, the loss of photons through the cavity
mirrors is reflected by the field damping term −iκ.
The phase diagram of Fig. 2 is obtained by solving

Eqs. (1) and (2) and analyzing their long-time behavior. As
initial conditions we choose a homogeneous BEC:
ψðx; 0Þ ¼ ffiffiffi

n
p

with n ¼ N=L the system’s density in one
dimension and an infinitesimally occupied cavity
αð0Þ ≪ 1, which is needed as a seed since Eqs. (1)
and (2) do not include noise. A transition toward stable
self-ordering is observed at a critical pump strength [48]
ℏ2η2crit ¼ ðℏωR þ 2gaanÞðδc þ κ2=δcÞ=2, with the disper-
sively shifted cavity detuning δc ¼ −Δc þU0N=2. This
transition is triggered by unstable density modulations at
the cavity wavelength λc. The latter indeed tend to optimize

(a) (b)

(c)

(d)

(e)

(h)

(f)

(g)

FIG. 4 (color online). Phase slippage through soliton nucleation for a finite value of the atom-atom interaction gaa ¼ 1.0ℏωR. The
condensate density (color scale) as a function of position and time is shown in panels (a) and (b). The time evolution of the cavity
amplitude is shown in panels (f) and (g). Panels (a) and (f) correspond to limit cycle dynamics at η ¼ 12.0ωR while panels (b) and (g)
correspond to chaotic dynamics at η ¼ 22.0ωR. In panels (a) and (b), white circles indicate the space-time coordinate of phase slips, i.e.,
phase singularities in the form of solitons having a zero-density core together with a π phase difference across it. The dynamics of a
single phase slip is illustrated in panels (c)–(e) for η ¼ 22.0ωR. The phase singularity is present in (d) as a π-phase jump localized at the
dark [nðxÞ ¼ 0] soliton position. The latter has a size of the order of the healing length ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgcn

p
∼ 0.1λ. The phase slip consists in

changing the sign of the phase jump π → −π [they are equivalent at the point nðxÞ ¼ 0]. Subsequently, in (e) the soliton increases its
minimum density from zero and moves away, carrying the energy subtracted from the initial phase gradient in (c). Panel (h) shows the
total number of phase slips NsðtÞ (solid line) generated up to time t together with the condensate kinetic energy Ek (dotted line) as a
function of time, for η ¼ 12.0ωR (in blue) and η ¼ 22.0ωR (in red).
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light scattering into the cavity, which in turn enhances the
density modulation in a runaway process. This is stabilized
by losses, providing convergence toward a steady state with
finite cavity amplitude α ≠ 0 and density modulation. This
happens both for high (U0 < 0) and low (U0 > 0) field-
seeking atoms. However, as we show here, in the latter case
the stable self-ordered steady state exists only up to a
second critical pump strength, above which it becomes
dynamically unstable and no time independent steady state
can be found anymore. The system performs instead self-
sustained oscillations (limit cycles) between self-ordered
configurations of the condensate [see Fig. 4(a) and the
cavity field, shown in Figs. 2(b), II 3(a), 3(b), and 4(f)]. The
onset of superradiance occupation of the cavity mode
pushes the low-field seeking atoms to the field nodes,
which then lowers the cavity occupation, letting the self-
ordered solution evolve back toward a state with smaller
density modulations. By the chosen pump strength the
latter is however unstable toward superradiance with large
modulations, which starts the whole cycle again.
As illustrated in Fig. 3, the limit cycles involve severalwell

defined frequency components, whose number is doubled
before the system dynamics turns eventually chaotic [49].
The onset of chaos by period doubling is a well known
phenomenon in nonlinear systems and has been observed
with nanomechanical oscillators coupled to light [31]. Here,
like in these systems, chaos develops at zero temperature and
without external periodic modulations or (delayed) feedback
control, with or without atom-atom interactions. The char-
acteristic time scale is given by the recoil frequency ωR,
which is an intrinsic property of the BEC-cavity system.
Different from what is so far studied with nanomechan-

ical media, nonlinear dielectrics, and nondirectly driven
BECs [37,38], the oscillations found here have a large
(nonperturbative) amplitude where the light intensity scales
with N due to the self-ordering of the atoms. The latter
generates nontrivial time-dependent spatial structures.
While spatial structures with a length scale set by the
cavity wavelength λc would be present had we considered
any (e.g., thermal) ensemble of driven polarizable particles,
the peculiar nature of their size and dynamics that we
observe here originates from the combination of macro-
scopic phase coherence (encoded in the BEC wave func-
tion) together with short-range atom-atom interactions
[inducing the term gaajψ j2 in Eq. (1)]. These two properties
in turn are at the core of the superfluid behavior of the BEC.
They indeed provide the condensate with a finite “phase
rigidity”, i.e., a finite energy cost ∝

R
dxð∂xφÞ2 of creating

a phase gradient in the wave function ψ ¼ jψ j expðiφÞ,
which is associated with a finite flow velocity of the
superfluid v ¼ ℏ∂xφ=m [50].
As illustrated in Fig. 4, the driven BEC coupled to the

lossy cavity, once entering the nonlinear oscillating regime,
shows large phase gradients and thus accumulates the
corresponding energy. The most efficient way for the super-
fluid to get rid of this extra energy is to convert it into

nonlinear dispersive waves through the process of phase
slippage [42]. In one dimension these waves are solitons, for
which phase slips take place as described in Fig. 4(c)–(e). We
observe indeed phase slippage as the system enters the
dynamically unstable regime. During the limit cycles, phase
slips take place periodically and are synchronized with the
oscillations. The rate of slippage is slow [see Fig. 4(h)] and
the solitons are nucleated always at the same position,
shown in Fig. 4(a). On the contrary, once the system has
entered the chaotic regime, phase slippage takes place at a
faster rate and the nucleation of solitons becomes irregular
in space and time. Interestingly, this fast proliferation of
solitons does not eventually destroy the BEC as usually
happens in an isolated superfluid. In the latter case the large
number of solitons causes the phase of the wave function to
change fast and over short length scales, thereby destroying
phase coherence. In addition, solitons contain a large kinetic
energy, which can be converted into the thermal component.
However, in our driven or dissipative system the proliferation
of solitons is counteracted by light scattering processes
transferring energy into the cavity field and expelling it
through photon losses. In general, this cavity cooling
[17,48,51–56] compensates the heating due to the dynamical
instabilities (already in the limit cycle regime quasiparticles
should be resonantly excited out of the condensate [57–62])
and can ensure the validity of the Gross-Pitaevskii equation
approach (1). The ratio of the heating to cooling rate can be
estimated to scale like κ=ωR [49]. We observe that even
though solitons are produced at a fast rate, the BEC kinetic
energy Ek ¼

R
dxℏ2j∂xψ j2=2m, after an initial increase,

fluctuates around a finite value of the order of the recoil
energy ℏωR, as shown in Fig. 4. The extension of the present
study to two dimensions should open up new directions in the
field of quantum turbulence [63] in driven or dissipative
condensates [64].
We finally point out that the system studied here is

already available experimentally since it involves a change
from red to blue detuning of the driving laser with respect
to the atomic resonance in the setups used in the ETH [5]
and Hamburg [7] laboratories.
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