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Unstable spinor Bose-Einstein condensates are ideal candidates to create nonlinear three-mode
interferometers. Our analysis goes beyond the standard SU(1,1) parametric approach and therefore
provides the regime of parameters where sub-shot-noise sensitivities can be reached with respect to the
input total average number of particles. Decoherence due to particle losses and finite detection efficiency

are also considered.
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Interferometers provide the most precise measurements
in physics [1-3]. Hence, there is an urgent demand for
novel theoretical proposals and experimental techniques
aimed at further increasing their sensitivity. Most of the
current atomic and optical interferometers are made of
linear devices such as beam splitters and phase shifters.
Their phase uncertainty is fundamentally bounded by the
shot-noise limit A@ ~ 1/+/7, when using probe states made
of average 7 uncorrelated particles [4,5]. It has been
clarified that overcoming this bound requires engineering
proper particle-entangled states [4] (see Refs. [6-8] for
reviews). Using such states, sub-shot-noise (SSN) phase
uncertainties have been demonstrated in several recent
proof-of-principle experiments with atoms [9-14] and
photons [15]. Yet, noise and decoherence limit the creation
and use of quantum correlations [16]. It is therefore crucial
to search for alternative schemes where probe states are
classical and quantum correlations useful to reach SSN
sensitivities are created inside the interferometer [9—11,17].

In this Letter, we show that the coherent spin-mixing
dynamics (SMD) in a spinor Bose-Einstein condensate
(BEC) [18,19] can be exploited to realize a nonlinear three-
mode interferometer, as shown in Fig. 1. The SMD consists
of binary collisions that coherently transfer correlated pairs
of trapped atoms with opposite magnetic moment [22] from
the my; =0 to the my = +1 hyperfine modes, and vice
versa. The probe state of the interferometer is classical,
given by a condensate initially prepared in the m; =0
mode, and quantum correlations are created by the SMD.
We first study the interferometer in the mean-field limit, the
m; = 0 mode operator being replaced by a c-number. This
analysis is valid for a large number of particles and low
transfer rates. In this case, the interferometer operations
belong to the SU(1,1) group and it is possible to obtain
analytical predictions for the phase sensitivity. In optical
systems, where transfer rates are rather low, the probe
state needs to be very intense and the SU(1,1) approach is
well justified [20]. SU(1,1) optical interferometry has
been theoretically discussed [20,23-25] and recently
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experimentally realized [26]. In contrast, experiments with
spinor BECs [13,27,28] can be performed well outside the
mean-field regime, with probe states of a relatively small
number of particles and—thanks to strong nonlinearities—
comparatively high transfer rates. We have thus also
implemented a full three-mode quantum analysis. Within
this framework, we can rigorously provide phase-sensitiv-
ity bounds with respect to the average total number of
particles 7 in input. For realistic values of 7, including
particle losses and finite detection efficiency, SSN is
obtained in a regime where quantum corrections to the
mean-field picture are important.

Spin-mixing interferometry with BECs.—The protocol
outlined in Fig. 1 follows five steps: (I) probe state
preparation (we consider empty my = +1 modes and a
BEC of average 7 atoms in the m; = 0 mode), (II) a first
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FIG. 1 (color online). Left: scheme of spin-mixing interferom-
etry with spinor BEC, here represented in the f = 1 manifold.
Right: when the m; = 0 mode is treated parametrically (mean-
field approach), the interferometer operations can be visualized
on a hyperbolic surface by projecting the transformed state over
SU(1,1) coherent states [20,21].
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SMD, (IIT) phase encoding, and (IV) a second SMD.
Finally, (V) the atoms are released from the trap: the three
magnetic modes are spatially separated and the particle
number is measured by imaging the atomic clouds.

A standard description of the SMD is obtained in the
single-mode approximation [29]: the condensate spatial
wave function y(r) in the m, = £1 modes is assumed to be
the same as in the my = 0 mode and it is given by the
solution of the Gross-Pitaevskii equation in the trapping
potential [30]. This approximation is justified for a rela-
tively low atom number 7 < 10° and tight confinement,
when the spin healing length is larger than the size of
the atomic cloud. These conditions are fulfilled in typical
experimental setups [19]. The field operators are thus
approximated by W,(r) = w(r)a;, where a; (a]) are anni-
hilation (creation) operators for modes i = m; =0, £1
obeying the boson commutation relations [&i,&j] =0;

N; = &,T&,» is the particle number operator). Up to terms
proportional to the constant total particle number
N=N_ +Ny+ NH, the many-body Hamiltonian
describing the SMD in a dilute atomic cloud is [30]

Hoyp = yh(e*ajasa a_, + e ¥ agaga’ a’ )
o1 . .
+Zfl<No—§)(N+1+N—1)- (1)

The first term is identical to four-wave mixing in nonlinear
optics [20,31], where ¢ is the relative phase between the
my = 0 and m; = 41 modes. The second term in Eq. (1)
is a mean-field shift. The coupling y = (4xh/3M)(c, —
co) [ &rlw(r)|* depends on the s-wave scattering lengths
¢o and ¢, of two bosons of mass M scattering in the total
spin channels F = 0 and F = 2, respectively [18,32]. We
indicate as (yt,¢), [(xt,¢),] the parameters for the first
[second] SMD. Experimentally, the SMD can be accurately
controlled via microwave dressing [19] and, in particular,
switched off during phase acquisition. Neglecting inter-
action between particles during this stage, the (linear) phase
shift Hamiltonian is

Hps = hq(N. .y +N_y), (2)

where 7iq is the energy difference between the m; = 0 and
the m; = &1 modes, see Fig. 1. The unitary transformation
e~iHrstes/M encodes the phase shift @ = 6., + 0_; = 2qtps,
where 6, are the phases accumulated by the atoms in the
my = £1 modes, relative to the ones in the m; = 0 mode,
during a time fpg. For instance, the signal can be the
second-order Zeeman shift due to a sufficiently strong
magnetic field. Note that the first-order Zeeman shift,
proportional to the net magnetization (equal to zero for
our initial state), is conserved.

The phase shift is estimated by measuring the number of
particles in the m; = 41 modes at the end of the inter-
ferometric sequence. We calculate the phase uncertainty as

AOcg = 1/y/mF(0), the Cramér-Rao lower bound
[6,8,33], where m accounts for the repetition of indepen-
dent measurements,

o= 1 dP(N|6)\2
=5 mw( ) O

is the Fisher information (FI), and P(N,|@) is the condi-
tional probability to measure N particles given the phase
shift 8. Afcy is a saturable lower bound of phase uncer-
tainty [6,8,33]. The FI can be experimentally extracted
following the method demonstrated in Ref. [12].
Alternatively, we can calculate the phase uncertainty from
the error propagation Afe, = (AN)ou/|d(N 1) eu/do),
where (N ), is the average number of particles in output
and (AN,,)2,, is the corresponding variance. This method
is experimentally feasible but not always optimal: we have
ABe,/\/m > Afcy, in general [4,8].

Mean-field approach.—When the initial condensate con-
tains a large number of particles and is weakly affected by
the SMD, we can study the interferometer operations

by replacing @, with /7. We introduce the operators
K.=Mahal vanas), Ky =L@,a -aqa.),
k.=1@"a., +a"a_, +1), which belong to the
SU(,1) group and satisfy [kx,ky] ——ik,, [f(y,f(z] =ik,
and [K,.K,] = iIA(y [20,34]. Equations (1) and (2) thus
become, up to a constant term, I:ISMD = (2n— l)xhlA( .
2ﬁ;(h(f(x cos2¢p + ky sin2¢) and Hpg = thf(z, respec-
tively. The interferometer protocol starts with vacuum in the
m; = %1 modes [Fig. 1, step (I)]. The first SMD e=iflswt/h

[(xt); = xt, ¢ = 0] generates a Lorentz boost [35,36] that
amplifies the population in the m; = 41 modes

8n* . L, (Van—1
— sinh® | ————y1 |,
4n —1 2

N(t) =

(4)

where N = (N, + N_,)gup [Fig. 1, step (II)]. The mean-
field description is thus valid when [37]

4t = 0, i > 400, such that 0 < yrVii < 1. (5)

The SMD generates a thermal distribution of perfectly
correlated atom pairs in the m; = +1 modes [22]: the
two-mode squeezed-vacuum state [31], with variance
(AN4)2up = N/2)[(N/2) +1]. The transformation
e~iHrestes/M rotates the state around the z axis of an angle 0
[Fig. 1, step (IIT)]. The final operation is a second SMD. This
can be implemented either as an inverse Lorentz boost
eiffswot/h [ie. (y1), = —(y1),, ¢» = 0, as in Fig. 1, step
(IV)] or by applying a /2 phase shift to the m; = 0 mode
followed by the transformation e=#sw!/% [i.e. (y1),=(y1),,
¢, = n/2]. The latter is easier to be realized experimentally
[38]. In both cases, the conditional probabilities are
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2IN (N +2)(1 = cos §)|V+ ©)
V(N +2)(1 = cos @) + 2JNart1”

P(N:ng) =

A direct calculation of Eq. (3) yields

Fo) = — NN 60 (7)
NN +2)sin?§ + 1 2

where N is given by Eq. (4). The FI reaches its maximum
at @ =0. In this case, if (y7), = —(yt), the two SMDs
exactly compensate and the output m, = &1 modes are
empty. Note also that (N ), = N (N + 2)sin?(6/2) and
(AN .1 )3u = (AN)Zypsin® (0/2)[(AN)gypsin® (6/2) + 1]:
error propagation saturates the Cramér-Rao lower
bound, Af,, = Afcg. At =0, we obtain Afcg =

1/y/mN (N +2), which is below the shot noise,

AOcg < 1/vVmN, calculated considering only the average
population in the m; = £1 modes after the first SMD
[20,26]. We notice here that the shot noise should be
calculated with respect to the total resources, i.e., the total
average number of particles 7 in the input state. However,
such an analysis is impossible within the SU(1,1) framework.

Full quantum approach.—We have thus performed a full
three-mode quantum analysis, investigating the regime of
parameters beyond Eq. (5). Thanks to the symmetry of the
Hamiltonian (1), we can restrict the discussion to the
Hilbert subspace spanned by Fock states {|N_;, Ny, N )=
|k, M — 2k, k)}, with 0 <k <[M/2] [39,40]. We take
P =120 (aMe™ /M)|0,M,0)(0,M,0] as the (input)
probe state.

We numerically calculate F() for different values of the
parameters 7, 5, and 0, where = (N, + N_,)gup/7 is
the fraction of particles transferred from the m; = 0 mode
to the my = 41 modes after the first SMD. We mainly
focus on the case (yt), = —(yt),, which, as shown below,
is optimal. Overall, the FI as a function of # shows a
behavior qualitatively similar to Eq. (7), with a maximum at
0 =0, see Fig. 2(a). A first important result is that, for
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FIG. 2 (color online). (a) The FI as a function of € (solid red
line) and error propagation 1/ (Ae)gp (dashed blue line). The
shaded area is F (@) > 7. Here, 7 = 50 and 7 = 0.2. (b) F, as a
function of 7. Dots are numerical results and solid lines are
quadratic fits to the data: F,y = a(n)a*, for 7> 1. Here,
n =0.05 (red), 0.1 (blue), 0.15 (green), and 0.2 (black). The
shaded area is Foy > 71. The inset shows a(n) as a function of 7
(dots). The solid line is a quadratic fit a(y) = > — 1.315%; the
dotted line is a(n) = 7.

proper values of x, the FI can be larger than 7 or,
equivalently, AG-g < 1/+v/mii. In other words, it is possible
to attain SSN uncertainties with respect to the average input
number of particles.

A scaling analysis of the FI as a function of 7 at the
optimal point § = 0 [we indicate F, = maxyF(6)] shows
that F ~ a(n)i* asymptotically in 7 (in our simulations
it < 1000), see Fig. 2(b). A fit gives a(n) ~n*(1 — 1.35)
in the case (yt),/(yt); = —1 [see the inset of Fig. 2(b)].
We thus conclude that AOcg ~ 1/ with a prefactor
depending on 7.

Figure 3 is the main result of this Letter. In panel (a) we
show F, as a function of the ratio (y),/(?),, for different
values of 7. For relatively large 7, outside the mean-field
regime, the curves are asymmetric around zero. The
optimal interferometer configuration is reached for
(xt), = —(x1),, but SSN can be also obtained for positive
values of (y1),/(xt),: inverting the sign of y in the second
SMD transformation, which might be experimentally
difficult, is not necessary to reach SSN sensitivities.
Figures 3(b) and 3(c) show the regime of parameters
where SSN can be achieved, for (yf), = —(y7), and
(xt), = (xt),, respectively. For fixed 5, a critical value
fi:(n) exists such that Afcg < 1/+/mn, for it > i (n).
Deviations from the mean-field prediction 7 (n) =
(1 —2n)/n* can be appreciated for small 7, especially
for (yt),/(xt); >0, and are relevant in current BEC
experiments [13,27,28].
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FIG. 3 (color online). (a) F,y as a function of the ratio
(xt),/(xt),. Solid lines refer to different values of . Here,
7 = 200. Panels (b) and (c) show the phase-sensitivity portrait in
the (57, n)-parameter space for (y7); = —(yt), and (y1),; = (y1),,
respectively. SSN phase uncertainties are obtained for 7
larger than a critical value 7.(n7) (dots, the solid line being
a guide to the eye). The dashed red line in both panels is
fie:(n) = (1 — 27)/n?, obtained from a mean-field calculation,
which agrees with the numerics in the limit (5). In all panels, the
shaded area indicates SSN.
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Particle loss and finite detection efficiency.—According
to Eq. (4), the SMD is unaffected by decoherence processes
that happen on time scales much longer than ~1/(yv/7).
For sufficiently large 7 and fast phase encoding, the non-
linear interferometer thus appears to be robust to one-body
losses (relevant for the spin-mixing dynamics in the f =1
manifold [41]). In fact, this dissipation source—due to
inelastic collisions of the ultracold trapped atoms with the
background thermal cloud, or by off-resonant light scatter-
ing in a dipole trap—has a density-independent rate.
Conversely, recombination losses—whose rate depends
on 7—may strongly affect the interferometer sensitivity.
We have thus simulated two-body losses in the m; =0
mode (relevant for the spin-mixing dynamics in the f = 2
manifold [13,27]) using a Monte Carlo wave-function
approach [42]. Let y indicate the depletion rate during
the SMD operation [i.e., (No(t)) =7/(1+ 2yti) for
y = 0]. Figure 4(a) shows the regime of parameters
(n,n) where SSN sensitivities can be found. The SSN
region shrinks when increasing y/y and, in particular, no
SSN is found for y/y = 0.04. The branch structure of the
SSN regions is explained by the characteristic effects
induced by particle losses shown in Figs. 4(b) and 4(c).
In Fig. 4(b) we plot  as a function of time, for different
values of y/y. Losses decrease the transfer rate and place an
upper bound to the achievable 7. In Fig. 4(c) we show the FI
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FIG. 4 (color online). (a) SSN region in (7, )-parameter
space including two-body losses in the my =0 mode, with
loss parameter y/y = 0.01, 0.02, and 0.03 (from outer to inner
regions). The thick blue line, for y = 0, is the same as the solid
line in Fig. 3. (b) 5 as a function of time, for different values of
v/x (solid lines). Here, 7 = 200 and the dashed line is Eq. (5).
(¢) Fop as a function of 7 for n = 0.2 and different values of y/y.
Dotted lines are guides to the eye. (d) SSN region in (1, n)-
parameter space obtained for detection noise ¢ =1, 2, 5, 10
(from outer to inner regions). The thick blue line (¢ = 0)
corresponds to the solid line in Fig. 3. In panels (a) and
(d) the dots are numerical results and the solid lines are guides
to the eye.

as a function of 7i. For i < (y/2y)?, the effect of losses can
be neglected and we recover the scaling F, o (52)* of the
noiseless case. For 7i > (y/2y)? losses dominate and the
sensitivity quickly degrades. For instance, in typical
experiments with 8Rb in the f = 2 manifold, the coupling
strength is y ~ 0.5 Hz and we estimate a ratio y/y~
1073-1072, well within our explored range.

To model finite detection efficiency we consider a
Gaussian convolution of the ideal output probabilities
[43,44]. Results for different values of the detection noise
o are shown in Fig. 4(d). In typical experiments ¢ ~ 10,
while a high detection sensitivity ¢ & 1 has been discussed
in Ref. [11]. In the regime (5) we can evaluate the FI from a
convolution of probabilities (6). This allows for semi-
analytical calculations giving, to the leading order in 1/
and for ¢ > 1, fi..(n) ~ 26/5*, which agrees with numerical
calculations for 7 — +o0 and 7 — 0. It predicts that n. (1)
shifts toward larger values when increasing o, an expected
behavior [25] that qualitatively holds also outside the
mean-field regime.

Conclusions.—We have studied a nonlinear three-mode
interferometer with spinor BECs. The nonlinear spin-
mixing dynamics not only splits the initial cloud but,
differently from a linear beam splitter, it also creates, at
the same time, quantum correlations among particles,
necessary to overcome the shot-noise limit. Therefore,
differently from linear interferometers, the nonlinear
scheme discussed in this Letter can reach SSN phase
uncertainties with classically correlated probe states.
Accurate predictions of the phase sensitivity require a full
three-mode quantum analysis, beyond the SU(1,1) (mean-
field) approach. We have performed such an analysis and
showed that it is possible to overcome the shot-noise limit
with respect to the total average number of atoms in input.
We also provide the regime of parameters where sub-shot-
noise uncertainties can be achieved, including losses and
finite detection efficiencies. Our results pave the way to
atomic ultrasensitive spin-mixing interferometry [38].
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