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The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter
waves instead of light promises resolution enhancement by orders of magnitude that scales with particle
mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on
free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be
expressed as a proper time difference experienced by two observers moving in opposite directions along
closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we
investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase
shift between trapped atoms in different internal states after transportation along closed paths in opposite
directions, without any free propagation. With analytic models, we quantify limitations of the scheme
arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with
previously demonstrated technology.
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The most sensitive Sagnac interferometers to date are
large ring lasers [1]. The largeWettzell laser gyroscope, e.g.,
achieves a theoretical resolution of 10−11 rad=

ffiffi
s

p
[2]. The

potentially enormous gain in sensitivity when usingmassive
particles [3] has attracted considerable efforts to buildmatter
wave interferometers [4]. Despite the immense challenges in
achieving similar particle flux and interferometer areas as
with photons, atomic gyroscopes [5,6] have reached perfor-
mance levels that should enable applications in fundamental
physics, geodesy, seismology, or inertial navigation. Atom
interferometers [7] have been demonstrated with record
sensitivities below 10−9 rad=

ffiffi
s

p
[8,9] outperforming com-

mercial navigation sensors by orders of magnitude. Recent
experiments aim at geodetic [10] and navigational applica-
tions combiningmultiaxismeasurements of acceleration and
rotation [11,12]. Since free falling atoms require large
apparatus size, ring shaped traps and guided interferometers
have been proposed [13–16] and implemented [17–22] for a
variety of geometries and levels of sophistication [23–25].
But guided interferometers with high sensitivity have yet to
be demonstrated.
So far, all demonstrated and suggested schemes employ

free propagation of particles along the interfering paths.
However, measurement of the Sagnac effect does not require
free propagation of matter waves. In fact, it has been
measured by comparing atomic clocks flown around
Earth [26]. Here, we show that the effect can be observed
with a single atomic clock. The scheme uses the acquired
phase shift between atoms in two different internal clock
(spin) states that are each fully confined in atom traps but
separately displaced. This approach, for which we suggest a
specific implementation following Ref. [27], offers a high
degree of control over atomic motion. It removes velocity

dependent effects and, most importantly, interferometric
stability requirements on optical control fields and interfer-
ometer paths. It improves control of heating fromwaveguide
corrugations and avoidswave packet dispersion allowing for
multiple revolutions.
The situation for fully confined atoms can be depicted

in an inertial frame, as seen in Fig. 1. Two independent traps,
each containing atoms of restmassm, are displaced around a
ring of radius r. Starting from a common angular position at
θ ¼ 0, the traps are moved along counterpropagating tra-
jectories and recombined at multiples of the half-revolution
time T. From the experimenter’s point of view, who defines
the trajectories, this happens on the opposite side
of the ring and at the original starting point. But if the
laboratory frame is rotating at angular frequencyωS, the first
recombination will occur at θ ¼ π þ ωST. In the inertial
frame, the traps will therefore be displaced at different
average angular speedsω� ¼ π=T � ωS, leading to a proper
time difference of Δτp ≈ 2πωSr2=c2 for the two co-moving
rest frames, proportional to the interferometer area. In these
co-moving frames each atomic state can be described as
evolving at its respective Compton frequency ωC ¼ mc2=ℏ
[28,29], leading to a phase difference ΔðωCτpÞ ≈ ωCΔτp þ
ΔωCτp for nonrelativistic speeds and energies (apart from
evolution due to the confiningpotentials,whichweendeavor
to make the same in both paths). The first term, which is
equivalent to the propagation phase difference in the inertial
frame, leads to the Sagnac phase for a half revolution
ϕS ≈ 2πωSr2m=ℏ, which advances any dynamical phase
ΔωCτp ≈ ΔET=ℏ resulting from energy differencesΔE that
can be included in the rest mass, e.g., different internal
energies of two clock states. This argument shows that the
Sagnac phase can indeed be measured accurately in a fully
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guided setting, as long as the internal energy difference
is precisely known or compensated, and shifts due to
confinement or external effects remain identical when
observed in the two rest frames.
Interferometer sequence.—Our scheme requires state-

dependently controlled trapping potentials moved around
a ring in combination with a Ramsey sequence used for
atomic clocks, as shown inFig. 1. In the elementary sequence
we study here, each atom is initially trapped at θ ¼ 0 and
prepared in a superposition of two nondegenerate spin states
jΨi ¼ ð1= ffiffiffi

2
p Þðj↓i þ j↑iÞ by starting in j↓i and driving a

resonantπ=2pulsederived fromastable reference clock.The
state dependency is then used to move atoms in state jð↑Þ↓i
(anti-)clockwise around the ring.When the two components
recombine on the opposite side, they will have acquired a
relative phase difference, which is measured by driving a
second π=2 pulse with an adjustable phase ϕref , converting
the phase difference into population difference.
In order to remove constant perturbations of the two spin

state energies or, equivalently, a constant detuning of the
reference clock, a spin echo sequence can be used. The π=2

pulse at timeT is extended to a π pulse, exchanging states j↓i
and j↑i, before rotating the state dependent traps in the
opposite direction such that each component completes a full
revolutionover time2T.Asbefore, a finalπ=2pulse converts
phase difference into measurable number difference. This
sequence removes the time-dependent dynamical phase,
because all atoms spend half the observer’s time in each spin
state. While this prevents operation as an atomic clock, it
does, however, not remove thepath dependent Sagnacphase.
This procedure also cancels effects from constant but
spatially dependent energy shifts as all atoms travel the same
paths in the same spin states.Becauseof the commonpath for
a full revolution, dynamical phases caused by constant
external acceleration, gravitation, or other static potentials
do not affect the measurement.
Guided interferometer models.—In the following, we

analyze the effects of fully confined transport and deter-
mine conditions that allow for reliable measurements of
the Sagnac phase. We neglect any interactions or mixing of
the two spin states and describe the dynamics of the
interferometer by a Hamiltonian of the form Ĥ ¼
ℏω½Ĥ↑j↑ih↑j þ Ĥ↓j↓ih↓j�. The frequency scale ω will
be specified below. We assume identical shapes for the
two state-dependent potentials and equal and opposite
paths in the laboratory frame. For the elementary sequence
shown in Fig. 1 and atoms starting in motional ground state
jgi, the final atomic state can be expressed using unitary
evolution operators jΨðTÞi ¼ P̂ðϕrefÞÛðTÞP̂ð0Þjgi ⊗ j↓i,
where ÛðTÞ ¼ Û↑ðTÞ ⊗ Û↓ðTÞ is the evolution imposed
by the Hamiltonian and P̂ðϕÞ describes a π=2 pulse with
phase ϕ. The measured signal is the population difference
hσ̂zi, where σ̂z ¼ j↓ih↓j − j↑ih↑j. This expression simpli-
fies to

hσ̂zi ¼
1

2
hgjÛ†

↓ðTÞÛ↑ðTÞjgieiϕref þ H:c: ð1Þ
Control of ϕref enables interferometer operation near maxi-
mal dependence on laboratory rotation. Accordingly, we
define the (dimensionless) scale factor for half revolutions as

Σ ¼ max
ϕref

���� dhσ̂zidωS

����ω: ð2Þ

Rotationsensitivity isgivenbySωS
¼ Sϕω=Σ,whereSϕ is the

detection noise of the interferometric phase.
One-dimensional model.—First, we consider an ideal-

ized situation where the atoms are tightly confined to a ring
of radius r, thus restricting the motional degrees of freedom
to the azimuthal coordinate θ. Within this ring we assume
that two harmonic potentials with trapping frequency ω are
displaced by the experimenter in opposite directions at
angular speed ωPðtÞ. In the laboratory frame, both paths
end on the opposite side of the ring at t ¼ T, imposing the
condition

R
T
0 ωPðtÞdt ¼ π. Transforming the Hamiltonian

to a state-dependent rotating frame that keeps both poten-
tials stationary leads to

FIG. 1 (color online). Experimental sequence. The situation is
depicted in an inertial frame. Starting with atoms prepared in j↓i
located at θ ¼ 0, a π=2 pulse generates a superposition of two
nondegenerate internal states. Atoms in jð↑Þ↓i are then trans-
ported along a circular path in (anti-)clockwise direction. After a
half revolution, a second pulse converts any phase shift into
population difference, which is measured in the elementary
sequence (black arrows). An extended Ramsey sequence (green
arrows) can be used to achieve full common path operation. Here,
the π=2 pulse at time T is extended to a π pulse, fully inverting the
atomic states. Transport is continued such that all atoms complete
a full revolution before converting and measuring the phase
difference at time 2T.
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Ĥ↑ð↓Þ ¼ â†âþ i
Rffiffiffi
2

p ½ΩS þ η↑ð↓ÞΩPðτÞ�ðâ − â†Þ; ð3Þ

where we introduced the function η↑ð↓Þ ¼ þð−Þ1, which
accounts for the opposite sense of rotation experienced
by the two spin states. Furthermore, we defined the
dimensionless parameters τ ¼ ωt, ΩS ¼ ωS=ω, ΩPðτÞ ¼
ωPðτÞ=ω and R ¼ r=xho with xho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
being the

harmonic oscillator length. The Hamiltonians in Eq. (3)
describe forced harmonic oscillators whose unitary time-
evolution operators can be expressed in the form of
displacement operators Û↑ð↓Þ ¼ expðα�↑ð↓Þâ − α↑ð↓Þâ†Þ ×
expðiϕ↑ð↓ÞÞ via the Magnus expansion [30]. The oscillation
amplitudes α are related to physical position and momen-
tum by

ffiffiffi
2

p
xhoα ¼ xph þ ipph=mω. We do not provide here

the lengthy explicit expressions of displacement α↑ð↓Þ and
phase ϕ↑ð↓Þ. Substituting the evolution operators into
Eq. (1) yields the population difference after the interfer-
ence step at time T (see Fig. 1)

hσ̂zi ¼ C1D cos ðϕS þ ϕrefÞ; ð4Þ
which consists of two factors. The first one is the contrast
C1D ¼ e−jΔαj2=2, which depends only on the final relative
coherent displacement of the two spin components
Δα ¼ α↑ − α↓ ¼ ffiffiffi

2
p

r=xho
R
T
0 ωPðtÞe−iωtdt. The second

factor is the oscillatory part of the signal which indeed
depends on the Sagnac phase ϕS ¼ 2πmr2ωS=ℏ.
This result shows that the Sagnac phase difference

accumulated by the atoms remains independent of the
temporal profile ωPðτÞ of the path taken. However, the
interferometer contrast, and therefore the signal’s sensitiv-
ity to rotation is reduced if the final states of the two
components are no longer in the ground state of the trap,
but (symmetrically) displaced. Any choice of temporal path
that does not contain Fourier components at the trapping
frequency, i.e., for which

R
T
0 ωPðtÞe−iωtdt ¼ 0, will achieve

maximum contrast by ensuring that the two wave packets
overlap completely and appear stationary, i.e., Δα ¼ 0. The
maximum speed at which this can be achieved is in
principle only limited by the maximum potential energy

at which the harmonic oscillator approximation for the
confining potentials remains valid.
Two-dimensional model.—The one-dimensional model

is oversimplified due to the assumption of an infinitely
strong radial confinement. In any practical implementation
non-negligible radial forces will occur, which depend on
the rotational speed and which are, in particular, different
for the two spin states when ΩS ≠ 0. To understand how
these inevitable effects impact on the operation of the
Sagnac interferometer we consider an exactly solvable two-
dimensional model in which atoms are held in the isotropic
and harmonic oscillator potential

Vðx; yÞ ¼ 1

2
mω2½(x − cos θ̂ðtÞ)2 þ (y − sin θ̂ðtÞ)2�: ð5Þ

As in the one-dimensional example, both spin components
travel in opposite directions. Spin-dependent trap motion is
introduced using θ̂ðtÞ ¼ R

t
0 du½ωS þ σ̂zωPðuÞ�. A particu-

larly simple analytical description of the system is achieved
by introducing the operators Â� ¼ ð1=2xhoÞð�ix̂þ ŷÞ
þðxho=2Þ½�iðd=dxÞ þ d=dy�. The Hamiltonian is then
given by

Ĥ↑ð↓Þ ¼ Ĥþ;↑ð↓Þ þ Ĥ−;↑ð↓Þ

Ĥ�;↑ð↓Þ ¼ ½1� ΩS � η↑ð↓ÞΩPðτÞ�Â†
�Â�∓ ℏR

Â� − Â†
�

2i
;

ð6Þ
where we used the same dimensionless quantities as in
Eq. (3). After transforming into an interaction picture
using the transformation Ŵ ¼ ŴþŴ− with Ŵ� ¼
e∓σ̂zi

R
ωT

0
dτΩPðτÞÂ†

�Â� the problem separates into linearly
forced harmonic oscillators. For the elementary sequence
of theinterferometerprotocolweperformahalf rotationof the
two traps in opposite directions. As before, this imposes
theconditionθPðωTÞ ¼ π on the angulardisplacementof the
potentials in the laboratory frame θPðτÞ ¼

R
τ
0 dτ

0ΩPðτ0Þ.
After the interference step at time T (see Fig. 1) the
interferometer signal is given by

hσ̂zi ¼ CþC− cos ðϕþ − ϕ− þ ϕrefÞ; ð7Þ
which depends on the phases

ϕ� ¼ R2

1�ΩS

Z
ωT

0

dτ sin½θPðτÞ� sin½ð1� ΩSÞτ� −
R2

4

Z
ωT

0

dτ
Z

ωT

0

dτ0 sin ½θPðτ0Þ þ θPðτÞ þ ð1� ΩSÞðτ0 − τÞ�

−
R2

2

Z
ωT

0

dτ
Z

τ

0

dτ0 cos ½ð1� ΩSÞðτ0 − τÞ� sin ½θPðτ0Þ − θPðτÞ� ð8Þ

and the contrast coefficients

C� ¼ exp

�
−
R2

2

����
Z

ωT

0

dτ sin½θPðτÞ�eið1�ΩSÞτ
����
2
�
: ð9Þ

As an example, we show the scale factor of the two-
dimensional interferometer in Fig. 2 for a ring of radius

R ¼ 10 (measured in terms of harmonic oscillator lengths)
and for different values of the rotational speed ΩS. The
results were obtained for a temporal path of constant speed
(flat-top profile), i.e., ΩPðτÞ ¼ π=ωT for 0 < τ < ωT. For
slow path speeds (ωT ≫ 1) the scale factor approaches the
adiabatic value Σad ¼ ðd=dΩSÞ2πΩSR2=ð1 −Ω2

SÞ2. For
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increasingly faster cycles nonadiabatic effects, i.e., the
sloshing motion of the atomic wave packets in the
individual traps due to sudden acceleration, give rise to
oscillations in the scale factor. In the extreme case (non-
overlapping wave packets at time T) the scale factor
approaches zero. Conversely, times of maximum overlap
result in peaked scale factor and are found at the approxi-
mate times ωTk ¼ ð2kþ 1Þπ=ð1þ ΩSÞ for integer k ≥ 1.
As shown in the inset of Fig. 2, scale factors at these times
are close to or even larger than the adiabatic limit Σad for
small ΩS. In principle, this permits fast, i.e., nonadiabatic
operation of the interferometer.
The data, moreover, show that larger ΩS as well as short

operation times can result in better sensitivity, caused by the
interplay of three different effects. First, larger centrifugal
forces lead to increased effective radius Reff and enclosed
interferometer area. While this is the only effect in the
adiabatic limit with Reff ¼ R=ð1 −Ω2

SÞ, it leads to a non-
linearly increasing scale factor beyond the simple Sagnac
effect due to the rotation-dependent enclosed area.Note, that
for jΩPj þ jΩSj > 1 the centrifugal force overcomes the
harmonic confinement and atoms become untrapped.
Second, fornonzeroΩS, the twospincomponents experience
different centrifugal forces and acquire a phase difference
from different potential energy in their respective traps,
depending on their relative radial motion. Third, the inter-
ferometer contrast depends on the laboratory rotation.
Overall, the most transparent situation is encountered at
ΩS ¼ 0, where the optimum phase reference angle is ϕref ¼
�π=2 and the contrast coefficients are equal (Cþ ¼ C−).
Here, similar but not identical to the one-dimensional case,
thecontrast ismaximizedand independentofΩS bychoosing
a path such that

R
ωT
0 dτ sin½θPðτÞ�eiτ ¼ 0.

Finite temperature.—Finally, we consider interferometer
operation with thermal states. We can use Glauber-
Sudarshan distributions of the density matrix in terms of

coherent states ρ ¼ R
d2ϵpðϵÞjϵihϵj for each oscillator.

For temperatures Θ well above the degeneracy temperature
we find the distribution function pðϵÞ ¼ ℏω=
ðπkBΘÞe−ℏωjϵ−αgj2=kBΘ [31]. A technical detail is the appear-
ance of offsets αg in the exponent. A state that is prepared in
the laboratory frame appears displaced due to our definition
of operators in the inertial frame. In the one-dimensional
case we have αg ¼ iRΩS=

ffiffiffi
2

p
; see Eq. (3). Here, we obtain

the thermal signal

hσ̂ziΘ ¼
Z

d2ϵpðϵÞhϵjÛ†
↓ðTÞÛ↑ðTÞjϵieiϕref þ H:c:

¼ hσ̂zie−ðkBΘ=ℏωÞjΔαj2 ¼ CΘ cosðϕS þ ϕrefÞ; ð10Þ

where hσ̂zi is the zero temperature result; see Eq. (4). The
behavior in the isotropic two-dimensional model is essen-
tially identical but with the contrast dependent on the
relative displacement in two dimensions.
This shows that finite temperatures result in unchanged

interferometer signals, if motional excitation of the traps is
avoided or cancelled after trap recombination (Δα ¼ 0).
Otherwise, the zero-temperature reduction in contrast
from imperfect state overlap is amplified. This is equiv-
alent to a white light interferometer, where the required
precision of wave packet overlap is given by the coher-
ence length. E.g., for the one-dimensional case, a final
relative displacement Δx that is purely spatial, i.e., for
equal momenta and Δα ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω=2ℏ
p hΔx̂i, the thermal

contrast for high temperature can be expressed in terms
of thermal wavelength λΘ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBΘ

p
and harmonic

oscillator length xho

CΘ ¼ e−½12þðkBΘ=ℏωÞ�jΔαj2 ≈ e−ðhΔx̂i2=2Þ½ð1=2x2hoÞþðπ=λ2ΘÞ�: ð11Þ

Experimental implementation with dressed potentials.—
A scheme for state-dependent circular transport of trap-
pable clock states of 87Rb [32] has been described in
Ref. [27], using radio-frequency (rf) fields to control atomic
motion [33–35]. Interferometry with such rf-dressed poten-
tials has been demonstrated in Ref. [36]. The positions of
the traps are robustly controlled by the rf phase of a single,
linearly polarized field, whose direction defines the recom-
bination points. The small differential Zeeman shift of the
clock states, which vanishes for certain parameters [37,38]
leads to nearly identical trapping potentials, thus optimiz-
ing state overlap, offering fine control over density depen-
dent effects, and minimizing sensitivity to ambient fields.
Recently, a frequency stability of Sf ≈ 4 × 10−3

ffiffiffiffiffiffi
Hz

p
has

been demonstrated with the relevant states in bare poten-
tials [39], limited by inhomogeneous broadening, field
fluctuations, and phase noise of the reference clock. The
full Ramsey sequence will remove inhomogenous broad-
ening and, in addition, the scheme in Ref. [27] enables
simultaneous operation of two closely stacked interferom-
eters, operating in opposite rotational senses. A differential

FIG. 2 (color online). Interferometer scale factor. Results for
the two-dimensional case are shown with R ¼ 10 and flat-top
speed profile ΩPðτÞ ¼ π=ωT for 0 < τ < ωT. Plots for ΩS ¼
0; 0.1; 0.2 are shown in black, blue, and red. The inset shows the
same data for 0 < ωT < 50.
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measurement will remove the common fluctuations and
phase noise as well as systematic errors from imperfect
pulse amplitudes and field aberrations. For uncorrelated
particle flux _n and clock stability Sf, phase detection is
limited by S2ϕ ¼ 4π2S2fT

2
cDþ 1= _n, where Tc is the cycle

time with duty cycle D < 1. For 90% suppression of noise
amplitude compared to [39] with Tc ¼ 1 s and D ¼ 0.1,
atomic shot noise will be dominant for particle flux up to
106 s−1. It is within experimental reach to use 1 cm
diameter loops to achieve corresponding sensitivities on
the order of SωS

≈ 10−9 rad=
ffiffi
s

p
.

Conclusion and outlook.—An atomic Sagnac interfer-
ometer can be implemented with fully confined atoms, at
finite temperature, enabling new designs of compact
devices. Beyond the principal effects discussed here, actual
implementations will need to take into account and
optimize effects resulting from interatomic collisions,
corrugations, and noise of trapping potentials, and interplay
of thermal motion and finite length spin operations.
Optimal control of atomic motion should allow for fast
and robust interferometer operation, which reduces phase
noise and could in principle achieve sensitivity to rotation
beyond the standard Sagnac effect.
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