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We present a fully perturbative mechanism that naturally generates mass hierarchies for the standard
model (SM) fermions in a flavor-blind sector. The dynamics generating the mass hierarchies can therefore
be independent from the source of flavor violation, and hence this dynamics may operate at a much lower
scale. This mechanism works by dynamically enforcing simultaneous diagonalization—alignment—
among a set of flavor-breaking spurions, as well as generating highly singular spectra for them. It also has
general applications in model building beyond the SM, wherever alignment between exotic and SM sources
of flavor violation is desired.
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Introduction.—The origin of the large mass and mixing
hierarchies among the standard model (SM) fermions—the
flavor puzzle—is a significant open problem in particle
physics. Attempts to resolve this problem have taken a
variety of approaches. The most well known is perhaps the
Froggatt-Nielsen mechanism [1], which assigns different
charges of a pseudoanomalous symmetry among the SM
generations. It thereby can physically distinguish fermion
flavors and generate a hierarchy of masses and relative
mixings for them. There exist multiple alternate formula-
tions or extensions of this general idea that assign various
types of horizontal dynamics to the SM generations (see,
e.g., Refs. [2–9], among many others).
Approaches of this type intrinsically link the origin of the

mass and mixing hierarchies. This can lead to flavor model-
building challenges. For instance, considering the first
two quark generations, the Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix element jVcdj ∼ 0.2, while the
mass hierarchy is mu;d=mc ∼ 10−3. Similarly, in the lepton
sector, the charged leptons exhibit a large mass hierarchy,
while the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix elements are all Oð1Þ.
In this Letter we present a mechanism that dynamically

and naturally generates SM mass hierarchies without
charging the SM fermions under any Froggatt-Nielsen
style horizontal symmetries. The SM fermions need only
be charged under their Uð3Þ flavor symmetries, and they
couple universally to the physics that generates their mass
hierarchies. This means that the scale at which the mass
hierarchies are generated, ΛH, can be independent from the
scale of flavor breaking, which could have interesting
phenomenological consequences. For example, ΛH may
be low enough to be detectable at the LHC; if ΛH is near the
electroweak scale, the Jarlskog invariant can be large
during the era of sphaleron transitions, opening up a
new avenue for significant electroweak baryogenesis.

Strategy.—Specifically, we show how to dynamically
generate vacuum expectation values—spurions—for a set
of bifundamental flavon fields, fλαg, with the “aligned,
spectrally disjoint and rank-1” pattern

hλ1i ¼ Udiagfr1; 0;…gV†;

hλ2i ¼ Udiagf0; r2;…gV†; ð1Þ

and so on, with U and V being unitary matrices, the
same for each flavon. (This is inherently different from a
rank-1 projector approach. See, e.g., Ref. [10].) Applied to
the SM with three generations, these spurions each break
Uð3Þ ×Uð3Þ–type flavor symmetry down to a different
subgroup, such that collectively the flavor symmetry is
broken down to baryon or lepton number. With spurions of
the form in Eq. (1), one may then naturally construct mass
hierarchies among the SM fermions by assigning extra
symmetries or dynamical effects horizontally among the
flavons. For instance, for a set of three up-type flavons
fλt;c;ug, bifundamental under Uð3ÞQ ×Uð3ÞU, the up-type
SM Yukawa terms could be generated from the irrelevant
operator

H†Q̄L

�
st
ΛH

λt
ΛF

þ sc
ΛH

λc
ΛF

þ su
ΛH

λu
ΛF

�
UR; ð2Þ

where ΛF ∼ hλαi is the scale of flavor breaking. The sα’s
are Uð3Þ ×Uð3Þ singlet operators—in this sense, they are
flavor blind—that encode a hierarchy hsti ≫ hsci ≫ hsui,
generated at the scale ΛH. The up-type quark mass
hierarchies follow immediately from the pattern (1), inde-
pendently of the structure of the matrices, U and V, that
encode flavor-violating effects. (We focus here on up-type
quarks, but the generalization to the down-type quarks and
leptons follows analogously.)
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This approach contrasts with Froggatt-Nielsen style
horizontal charges, which are assigned directly to the
SM fermions. Instead, the SM fermions are coupled
universally to the flavor-blind, hierarchy-generating oper-
ators sα. While hsαi=hsβi is fixed by the observed SM mass
hierarchies, and while the flavor-breaking scale, ΛF, is
bounded below by precision flavor constraints, the hier-
archy scale ΛH is unconstrained by these effects and could
be quite low.
The particular scenario we have in mind is to consider

three sectors: a SM sector, a “flavor” sector, and a
“hierarchy” sector. The dynamics of the flavor sector
breaks the Uð3ÞQ ×Uð3ÞU flavor symmetries at a scale
ΛF by generating spurions of the form (1) for the three
flavons λt;c;u. Suppose that these flavons also carry parity
symmetries Pα∶ λα → −λα. These are broken by Pα-odd,
flavor singlet spurions hsαi, generated in the hierarchy
sector at ΛH. The SM, flavor, and hierarchy sectors then
interact through the three-way portal in Eq. (2). We show a
schematic representation of this scenario in Fig. 1. We also
show a sample UV completion, which generates the
operator (2) at tree level, in which sα is a set of scalar
fields. [Note that other operators like H†Q̄Lsαλαλ

†
βλβUR are

annihilated by the pattern (1).]
In the remainder of this Letter we will first specify the

algebraic conditions that automatically ensure that a set of
matrices is aligned, spectrally disjoint, and rank 1. We
proceed to show that the most general renormalizable
potential for the λα has a minimum that enforces these
algebraic conditions. With this mechanism in hand, we will
present an example of a set of horizontal discrete sym-
metries on the spurions that can generate the SM mass
hierarchies. We will also show how to construct an
approximate CKM matrix within this framework.
Algebraic conditions.—Consider two tensors λiI and

ξiI charged under the bifundamental of a UðnÞ ×UðnÞ
flavor symmetry group. That is i; I ¼ 1;…; n are indices
of the (anti-)fundamental representations. We adopt a
matrix notation that encodes contractions of indices of
the same type. For instance, ðλξ†Þij ≡P

IλiIξ
�
jI and

ðλξ†Þ†ij ≡ ðξλ†Þij, and similarly for uppercase indices.
Hereafter, we shall not distinguish between the two index
types, but we will remember instead that λα can contract on

the right or the left with λ†β, but not with λβ, and that λ†λ
lives in a different space than λλ†, etc.
Alignment: Suppose that

½λ; ξ�1 ≡ λ†ξ − ξ†λ ¼ 0; ½λ; ξ�2 ≡ λξ† − ξλ† ¼ 0; ð3Þ

so that λ†ξ and λξ† are both Hermitian. This is necessary
and sufficient to ensure that λ and ξ may be simultaneously
biunitarily real diagonalized by the same two unitary
matrices. In other words,

λ ¼ UDλV† and ξ ¼ UDξV†; ð4Þ

with Dλ and Dξ diagonal and real: we say λ and ξ are
“aligned.” This result extends to a set of k ≥ 2 tensors λα
that all satisfy the condition (3) pairwise. We include a
proof in the Supplemental Material [11]. (See also
Ref. [12], which proves a more general statement.)
Spectrally disjoint: Suppose we further require

λ†ξ ¼ 0 and λξ† ¼ 0: ð5Þ

This condition subsumes Eq. (3), so λ and ξ must be
aligned. When combined with Eq. (4), this condition
further implies DλDξ ¼ 0, or in index notation
dλidξi ¼ 0, for each i, where dλi and dξi are the real
diagonal elements of Dλ and Dξ. Hence, under the con-
dition (5), λ and ξ are required to be aligned and “spectrally
disjoint,” in the sense that dξi ¼ 0 whenever dλi ≠ 0, and
vice versa. The converse statement follows trivially.
Equation (5) extended pairwise to a set of k tensors is,
therefore, sufficient and necessary for them all to be aligned
and spectrally disjoint.
Rank 1: A maximal set of n linearly independent tensors

that satisfy Eq. (5) pairwise are automatically also “rank 1,”
in the sense that each tensor must have a single nonzero
eigenvalue. More generally, any single tensor λ is rank 1 if
and only if

Trðλ†λÞ2 − Trðλ†λλ†λÞ ¼ 0: ð6Þ

In index notation, this becomes
P

i<jjdλij2jdλjj2 ¼ 0, and
the only nontrivial solution is jdλi0 j > 0 and dλi≠i0 ¼ 0 for
some i0 ∈ f1;…; ng. Hence, λ is rank 1, and the converse
argument is trivial. A set of tensors, therefore, has the
aligned, spectrally disjoint and rank-1 structure (1) if and
only if the algebraic conditions (5) and (6) are satisfied
pairwise and individually on the set, respectively.
Potential.—We now proceed to construct a potential that

ensures that Eqs. (5) and (6) hold dynamically for a set of
up-type flavons, λα ∈ fλt; λc; λug. The parities Pα∶ λα →
−λα restrict the form of the renormalizable potential, such
that it may only involve terms containing, at most, two
different flavons. The full potential for k ≥ 2 flavons can

FIG. 1. (Left panel) Schematic representation of the low energy
effective theory. The lines represent the irrelevant interactions in
Eq. (2). (Right panel) Sample UV completion, in which ΛH and
ΛF are identified with the mass scales of ϕα and χα, respectively.

PRL 115, 161803 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 OCTOBER 2015

161803-2



therefore be constructed from a sum of single-field poten-
tials and two-field potentials.
Single-field potential: The most general flavor-invariant

renormalizable potential for a single flavon is

Vα
1f ¼ μα1jTrðλ†αλαÞ − r2αj2

þ μα2½Trðλ†αλαÞ2 − Trðλ†αλαλ†αλαÞ�
¼ μα1

���X
i

jdαij2 − r2α
���2 þ 2μα2

X
i<j

jdαij2jdαjj2: ð7Þ

Both operators are positive semidefinite. For μα1;2 > 0,
Eq. (6) is therefore satisfied at the minimum of this
potential. The particular solution is jdαi0 j ¼ rα for some
i0 ∈ f1;…; ng and dαi≠i0 ¼ 0. Hence, λα is rank 1.
Two-field potential: The most general CP-conserving,

flavor- and parity-invariant renormalizable potential for two
fields λα and λβ can be written as

Vαβ
2f ¼ μαβ3 ½Trðλ†αλαÞ þ Trðλ†βλβÞ − r2α − r2β�2

þ
X
�
μαβ4;�jTr½λ†αλβ � λ†βλα�j2

þ
X
i¼1;2

μαβ5;iTr½½λα; λβ�†i ½λα; λβ�i�

þ μαβ6 fTr½ðλαλ†βÞ†ðλαλ†βÞ� þ Tr½ðλ†αλβÞ†ðλ†αλβÞ�g:
ð8Þ

The operators in Eq. (8) are all manifestly positive
semidefinite. With all of the coefficients positive, the
global minimum of the potential is thus V2f ¼ 0. The
operator corresponding to μ3 vanishes if both λα and λβ
are in the vacua of their single field potentials (7). The
operator corresponding to μ6 is nonzero if and only if
λ†αλβ ¼ λαλ

†
β ¼ 0, and all remaining operators also vanish at

this condition. Hence, the global minimum of V1f and V2f

together is located at the aligned, spectrally disjoint, and
rank-1 conditions (5) and (6).
Extended to a set of k fields, fλαg, the pairwise potential

Vpp ¼
X
α

Vα
1f þ

X
α<β

Vαβ
2f; ð9Þ

with couplings all positive thus dynamically generates
a set of spurions of the desired pattern (1). The flat
directions of its minimum are parametrized solely by the
unitary matrices U and V, which simultaneously rotate
fλαg as in Eq. (1). Although the potential appears to contain
a very large number of free parameters, the only significant
parameters for the low energy physics are the radial norms
rα, as long as all of the other parameters are positive.
Parity breaking effects: Breaking of the Pα symmetries in

the hierarchy sector can radiatively induce parity-odd

operators in the potential, e.g., Trðλ†αλβÞ. Since all such
operators are invariant under the simultaneous rotation of
the set fλαg, they do not destabilize the flat directions of the
vacuum. In addition, these parity-odd terms are suppressed
by ðhsαihsβi=Λ2

HÞ for every pair of parity symmetries Pα;β
that they break, and they can be further two-loop sup-
pressed by the SM portal (2) (see the UV completion in
Fig. 1 for an example). For the SM quarks, the largest
parity-odd contribution is then ∼ðmcmt=v2Þ=ð16π2Þ2 ≪
mu=mt, the largest hierarchy in the system. All such terms
may then be neglected.
Two-sector potential: Now consider a second set of three

down-type flavons λα̂ ∈ fλb; λs; λdg that are charged under
flavor Uð3ÞQ × Uð3ÞD. We distinguish these from the up-
type flavons by their hatted index. The common Uð3ÞQ
group admits up-down cross terms

Vαα̂
mix ¼ ναα̂1 Tr½ðλ†αλα̂Þ†ðλ†αλα̂Þ�

þ ναα̂2 ½Trðλ†αλαÞ þ Trðλ†α̂λα̂Þ − r2α − r2α̂�2; ð10Þ

into the most general CP-, flavor-, and parity-invariant
potential, i.e., Vup

pp þ Vdown
pp þ Vmix. Both operators are

positive semidefinite, and we assume ν1;2 > 0. The ν2
term vanishes at the vacua of Vpp, but the ν1 terms cannot
vanish simultaneously with the μ6 terms since one cannot
nontrivially satisfy λ†αλβ ¼ λ†αλα̂ ¼ λ†α̂λβ̂ ¼ 0.

Since Vmix respects λαλ
†
β → −λαλ

†
β for α ≠ β, it cannot

introduce tadpoles that shift the nontrivial stationary points
of Vpp from the fλαλ†β ¼ 0gα≠β contour. Moreover, the ν1
term has curvature ∂2Vmix;ν1=∂λα∂λ†β ∝ δαβ. Provided ν1 is
somewhat small compared to μ6 and μ4;þ, this term cannot
destabilize an existing Vpp minimum. No symmetries,
however, forbid tadpoles that shift the location of the
radial vacuum Trðλαλ†αÞ. Hence, the total potential retains
local nontrivial minima somewhere on the fλαλ†β ¼ 0gα≠β
contour, i.e., at the aligned, spectrally disjoint configura-
tion. For ναα̂1 > 0, the cross terms typically squeeze the
location of the radial vacuum to Trðλαλ†αÞ ¼ r̄2α < r2α.
Provided ναα̂1 are not too large compared to the μα1 terms,
the vacuum remains nontrivial, i.e., hλαi ≠ 0.
It remains for us to check that the unit rank of hλαi is not

spoiled. The desired configuration (1) is explicitly

λα ¼ UUDαV
†
U; λα̂ ¼ UDDα̂V

†
D; ð11Þ

where we choose Dα to be the rank-1 diagonal matrix
whose αth diagonal entry, dα ≠ 0. At this configuration, the
cross terms become

Vαα̂
mix ¼ ναα̂1 d2αd2α̂jVαα̂

ckmj2; ð12Þ

where Vαα̂
ckm is the αα̂th element of Vckm ≡U†

DUU, the usual
unitary up-down mixing matrix. Unitarity forbids all of
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these terms from simultaneously being zero. This term also
lifts the UU and UD flat directions of the potential (9). That
is, it determines the texture of Vckm.
Perturbing the βth diagonal zero entry of Dα by ϵ

corresponds to perturbing the rank-1 (or disjoint) configu-
ration. From Eqs. (10) and (11), this generates only an
Oðϵ2Þ correction δVαα̂

mix ¼ ϵ2ναα̂1 d2α̂jVβα̂
ckmj2. One may sim-

ilarly check that in the vacuum of Eq. (12), OðϵÞ pertur-
bations of the alignment condition arise in Vmix atOðϵ2Þ, in
concordance with the argument above. Thus, provided μ6,
μ4;þ ≳ ν1 > 0, there remains a local minimum at the
aligned, spectrally disjoint, rank-1 configuration for each
set. In contrast, note that perturbing the nonzero element
dα → dα þ ϵ leads to a OðϵÞ tadpole, as above, that shifts
the radial vacuum away from rα.
SM hierarchies.—Quark sector: In general, one is free to

choose the mechanism at work in the hierarchy sector. We
present here an example which makes use of horizontal
discrete symmetries to generate the SM quark hierarchies.
We assign an integer charge pα (pα̂) to each λα (λα̂) under

its own individual discrete symmetry Z2pα
(Z2pα̂

), except
for λt. These discrete symmetries act as the parity sym-
metries Pα on the flavons, required to secure the potential in
Eqs. (9) and (10) [13]. The suppression of parity-odd terms
is not spoiled if only a single flavon—λt in this case—in
each set does not carry a parity. For each symmetry Z2pα

(Z2pα̂
), we further assign a field σα (σα̂), belonging to the

hierarchy sector, with unit discrete charge. This produces
the irrelevant operators

H†Q̄L

�
λt
ΛF

þ
�
σc
ΛH

�
pc λc
ΛF

þ
�
σu
ΛH

�
pu λu
ΛF

�
UR

þHQ̄L

��
σb
ΛH

�
pb λb
ΛF

þ
�
σs
ΛH

�
ps λs
ΛF

þ
�
σd
ΛH

�
pd λd
ΛF

�
DR:

ð13Þ
There is neither Z2pt

nor σt, so that the top Yukawa
coupling is unsuppressed. Applying the pairwise potential
(9) and (10) to both up- and down-type flavons, we obtain a
complete set of aligned, spectrally disjoint, and rank-1
spurions, as in Eq. (11). In other words,Dt ¼ diagf0; 0; r̄tg
and so on, with r̄α ≲ ΛF being the radial location of the
vacuum.
If we further assume an approximately uniform scale of

breaking for all of the discrete symmetries hσαi=ΛH ∼ ε—a
natural assumption—then an hsαi ∼ ΛHε

pα hierarchy is
generated by the discrete charges pα alone. For example,
one could make the discrete charge choices

pc ¼ 2; pu ¼ 5; pb ¼ 2;

ps ¼ 3; pd ¼ 5: ð14Þ

For ε ∼ 0.1, this approximately reproduces the SM quark
mass hierarchies.

For anarchic ναα̂1 > 0, the potential (12) ensures that the
flavor mixing matrix settles to a sparse unitary matrix. One
can, however, generate an approximation of the observed
CKM matrix with some special choices. Suppose there
exists a symmetry which requires the couplings ναα̂i and μαβi
to be universal in α and α̂, while rt > ru ¼ rc and
rb > rd ¼ rs. One may show the potential is minimized
for a mixing matrix

Vckm ¼

0
B@

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

1
CA ð15Þ

which has a single, arbitrarily large mixing angle for the
first two generations. Reproducing the rest of the CKM
matrix likely requires the introduction of further small
perturbations, perhaps arising from irrelevant operators or
interactions coupling to Uð3ÞU ×Uð3ÞD. We emphasize
that this flavor-violating physics is independent from the
dynamics of the hierarchy sector.
Lepton sector: A similar process may be applied to the

SM leptons, for HL̄LER and H†L̄LNR Yukawa couplings
analogous to Eq. (2). For ναα̂i , μαβi , and rα all universal in α
and α̂, the PMNS mixing matrix may have arbitrary Oð1Þ
entries. (A different mechanism, however, may be respon-
sible for the extreme overall suppression of the neutrino
Yukawa couplings.)
The degeneracy of two of the neutrino masses in the

case of an inverted hierarchy [14] can be explained if this
sector has only two flavons, λ and ξ, but with μξ2 < 0,
2μ4;þ þ μ6 ≫ jμξ2j=2, and, still, μλ2 > 0. In this scenario,
μξ2 < 0 relaxes the rank-1 condition such that the ξ spurion
eigenspectrum prefers instead to be degenerate. When
combined with the more energetically favored disjoint
condition (5) enforced by μ6 and μ4;þ, one finds

hλi=ΛF ∼Udiagf0; 0; 1gV†;

hξi=ΛF ∼Udiagf1; 1; 0gV†: ð16Þ

One may then obtain two degenerate Dirac neutrino masses
and one much lighter.
BSM applications.—In the context of beyond the SM

(BSM) model building, it is often desirable to obtain new
physics (NP) whose flavor-breaking effects are aligned
with, but not proportional to, the SM Yukawa couplings.
This is more general than minimal flavor violation, and it
can be achieved dynamically with the Vpp potential.
Assume the existence of a SM spurion λsm ∼

Udiagfδ0; δ; 1gV†, with δ0 ≪ δ ≪ 1, and a second field,
λnp, whose vacuum expectation value represents a flavor-
breaking NP spurion. We apply the potential (9) for these
two spurions, but treat λsm as a static background field,
fixed by some high scale physics. For λsm and λnp to be
aligned, it suffices that the condition (3) is satisfied: if
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μ5;i > 0, it is energetically favorable for λnp to settle such
that the corresponding operators vanish. This automatically
results in alignment with λsm.
Since λsm has maximal rank, it is not possible for the two

spurions to be spectrally disjoint. In the limit μnp1 >
jμnp2 j ≫ μ4;þ; μ6, taking all constants to be positive except
μnp2 , the vacuum solution is either one of

hλnpi=ΛF ∼Udiagf1; 0; 0gV†;

hλnpi=ΛF ∼Udiagf1; 1; 1gV†; ð17Þ

corresponding to whether μnp2 > 0 or μnp2 < 0, respectively.
These two spurions are linearly independent and aligned.
As such, one can span the whole space of possible aligned
NP spurions by taking linear combinations of these two
spurions and λsm.
Conclusions.—We have shown that the SM fermion

mass and mixing angle hierarchies may have autonomous
origins, such that they may arise at vastly different physical
scales. This result is a consequence of a new mechanism, in
which the vacuum of the general flavon field potential
dynamically generates an aligned, spectrally disjoint, and
rank-1 structure for the Uð3Þ × Uð3Þ flavor-breaking spu-
rions. Of particular significance, this mechanism permits
the physics responsible for the SM quark mass or Yukawa
hierarchies to operate close to the electroweak scale,
without being in conflict with precision flavor constraints.
It may, therefore, be experimentally accessible at LHC. It
also may have broad applications in the construction of
flavor-safe, natural BSM theories or for electroweak
baryogenesis.
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