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The translational diffusion of tracers in glass-forming materials often violates the Stokes-Einstein
relation while their rotation follows the Debye-Stokes-Einstein relation faithfully, thus decoupling
translational and rotational diffusion. In this Letter, we show by performing molecular dynamics
simulations for two-dimensional (2D) colloids that the tracer shape and the local media structure are
critical such that rotational diffusion is either suppressed or enhanced depending on the tracer shape. For
square tracers dissimilar in structure to the local media structure of 2D colloids, the translation-rotation
decoupling occurs and the rotational diffusion is enhanced relative to the translation. For sufficiently large
diamond tracers similar in structure to the local media structure, tracers undergo rotational hopping motions
and their rotation is suppressed relative to the translation. For distorted-diamond tracers, the decoupling
is marginal. Translational diffusion does not change significantly with the tracer shape and obeys the
Stokes-Einstein relation.
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Translational (DT) and rotational (DR) diffusion coef-
ficients of tracers in various complex systems often
decouple from each other [1–10] even though Stokes-
Einstein (SE) and Debye-Stokes-Einstein (DSE) relations
suggest that DT=DR should be constant over a range of
temperature. It is called the translation-rotation decoupling,
one of the hallmarks of glassy dynamics. How the trans-
lation-rotation decoupling occurs and how the decoupling
would relate to the local media structure still remain
elusive. It is partly because the values of DR estimated
via the Debye formalism (using rotational relaxation time)
and Einstein formalism (using mean-square angular dis-
placement) are different in some systems [5–7]. The shape,
size, and interparticle interactions of tracers were different
in different studies, which also makes systematic inves-
tigation challenging [9–15]. In this work, we compare
tracers of different shape but similar size and interparticle
interactions in two-dimensional (2D) colloidal suspensions.
We show that the choice of the tracer shape could be
critical, such that the translation-rotation decoupling occurs
in qualitatively different fashions depending on tracer
shape. Considering that the tracers are stand-ins to inter-
rogate the 2D colloid dynamics, the effects of the tracer
shape indicate that the local media structure should relate to
the dynamic heterogeneity (DH) of 2D colloids.
The translation-rotation decoupling in glasses and super-

cooled liquids has been attributed to the breakdown of
the SE relation and spatially heterogeneous translational
diffusion, i.e., the presence of domains of different mobility
[1–3,16,17]. DR, on the other hand, remains faithful to the
DSE relation [1]. When translation and rotation decouple,
translational diffusion is usually enhanced relative to

rotational diffusion [1,8,18]. A few simulation studies
reported an opposite trend where rotation was enhanced
relative to translation, which was, however, attributed to the
discrepancy between Einstein and Debye formalisms [5–7].
Edmond et al. illustrated recently that when Debye and
Einstein formalisms provided identical values of DR, the
translation-rotation decoupling accompanied the enhance-
ment of translation compared to rotation [8]. In this work,
we illustrate that the translation of diamond tracers in 2D
colloid suspensions is enhanced compared to rotation while
the rotation of square tracers is enhanced compared to
translation. In the meantime, the decoupling of distorted-
diamond tracers is marginal. Debye and Einstein formal-
isms provide identical DR’s for all three types of tracers
when the first-order rotational time correlation function is
employed.
2D colloidal liquids have been investigated extensively

because structural information such as a medium-range
crystalline order may be readily accessible unlike three
dimensional (3D) systems [19–26]. Monodisperse 2D
colloidal suspensions also exhibit a rich phase behavior
with an intermediate hexatic phase between isotropic liquid
and solid phases [27,28]. They become dynamically
heterogeneous in the hexatic and solid phases [20,23]. In
2D hexatic and solid phases with hexatic bond orientational
order (HBOO), the locally favorable structure (LFS) is, of
course, hexagonal, which is identical to the globally stable
structure. When the tracer shape is similar to the hexagonal
structure like diamond tracers, the rotation of the tracers
should be affected significantly by 2D colloids. Diamond
tracers undergo rotational hopping motions by integer
multiples of π=3. On the other hand, square tracers,
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dissimilar in structure to the local media structure, do
Brownian rotational diffusion.
2D colloids are modeled as discs of diameter σ and mass

m. Colloids interact with each other via a truncated and
shifted Lennard-Jones potential (ULJðrÞ ¼ 4ϵ½ðr=σÞ12−
ðr=σÞ6� − Uc, where Uc ¼ 4ϵ½ðrc=σÞ12 − ðrc=σÞ6� and
rc ¼ 2.5σ). m, σ, and kBT are units of mass, length, and
energy in this study, respectively, where kB denotes the
Boltzmann constant. The time unit is τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=kBT

p
¼ 1.

All three different shapes of tracers are composed of 16
discs of diameter σ and mass m [Fig. 1(a)]. The interaction
between discs of tracers is described by the Weeks-
Chandler-Andersen potential to prevent the aggregation
of tracers. The interaction between the discs of tracers and
colloids is described via ULJ.
Intraparticle interactions between discs in a single tracer

are described by both harmonic bonding (Ub) and bending
(Ua) potentials. All pairs of neighbor discs are bonded
tightly by invoking Ub ¼ 100kBTðr=σ − 1.2Þ2, where r is
the distance between a pair of neighbor discs. There are a
total of 36 bonding angles between neighbor discs for a
tracer. The bending potential Ua ¼ 100kBTðθ − θeÞ2=deg2
is applied to each of the bonding angles, where θ and θe
denote the bonding angle and its value at a potential energy
minimum, respectively. The values of θe for 36 bonding
angles are either α or β ¼ π − α. We tune the tracer shape
by selecting the values of α and β: ðα; βÞ ¼ ð60°; 120°Þ,
(90°, 90°), and (75°, 105°) for diamond, square, and
distorted-diamond tracers, respectively [Fig. 1(a)]. The
force constants for Ub and Ua are so large that tracers
are effectively rigid.
Initial configurations are prepared by inserting 5 tracers

and 14 296 colloids at random positions in a simulation cell

of dimension L ¼ 128σ. Periodic boundary conditions are
applied in all directions. The number density ρ in this study
is about 0.88. We propagate systems in a canonical
ensemble by employing the LAMMPS molecular dynamics
simulator with a velocity-type Verlet integrator and Nosé-
Hoover thermostat [29]. We change T from 2 to 0.8 to
investigate the liquid-to-hexatic phase transition of 2D
colloids. We observe and confirm the liquid-to-hexatic
phase transition near T ¼ 1 by calculating bond order
correlation function, its susceptibility, and radial distribu-
tion function [20,23,30].
In the hexatic phase with quasi-long-range HBOO, the

dynamics of 2D colloids becomes spatially heterogeneous
[23]. Figures 1(b) and 1(c) depict the mobility maps of 2D
colloids at T ¼ 0.9 with diamond and square tracers,
respectively. The mobility (μ) of each colloid is defined
as a displacement of the colloid within t ¼ 50, which is
about the relaxation time of 2D colloids. The non-Gaussian
parameter of 2D colloids is maximum at t ≈ 50 at T ¼ 0.9.
The color code of 2D colloids in Fig. 1 is determined based
on μ of each colloid: red colloids are mobile whereas purple
colloids are sedentary. The domains of different μ are
observed clearly, showing that 2D colloid dynamics in the
hexatic phase is spatially heterogeneous. Recent studies
showed that the surface roughness of tracers influenced the
mobility of supercooled liquids: rough and smooth surfaces
decreased and increased μ of the supercooled liquids,
respectively [12,31]. In 2D colloids, on the other hand,
the presence and the shape of tracers do not affect
significantly both the mean-square displacements and the
non-Gaussian parameters of 2D colloids [30].
Square tracers are more likely to be surrounded by

mobile colloids while diamond tracers are surrounded
mostly by sedentary colloids of μ ≤ 1. Figure 2(a) depicts
the mobility distribution functions PðμÞ of colloids around
tracers. We count only colloids whose distance to the center
of mass of a tracer is less than 5σ. PðμÞ’s are different for
different shapes of tracers.
Such differences in PðμÞ are attributed to how much the

tracer shape is similar to HBOO of 2D colloids. We
calculate the distribution function Pðjψ6jÞ [27] to evaluate

(a)

(b) (c)

FIG. 1 (color). (a) Three types of tracers are employed:
diamond, distorted diamond, and square. The values of α and
β are different for different shapes. The vector ~uðtÞ is the unit
vector parallel to the side of each tracer at time t. Mobility maps at
T ¼ 0.9 for (b) diamond tracers (black) and (c) square tracers
(black) in colloids. The color code of colloids is determined based
on the mobility (μ) of each colloid.

(a) (b)

FIG. 2 (color online). Distribution functions of (a) the mobility
(μ) and (b) the local orientational order (ψ6) of colloids around
tracers.
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the local structure of colloids around tracers, where
ψ6 ≡ ð1=NnÞ

PNn
j¼1 expð−i6θnjÞ, Nn is the number of the

neighbor colloids around a particular nth colloid, and θnj
denotes the angle between an arbitrary reference vector and
a bond of the nth colloid and the jth neighbor colloid.
jψ6j ¼ 1 if the colloid at the center and its neighbors are
arranged in a perfect hexagonal structure. As shown in
Fig. 2(b), colloids around a diamond tracer are more likely
to form a hexagonal structure while the hexagonal arrange-
ment of colloids disappear the most significantly for square
tracers. In other words, around square tracers there are the
most defects, which may facilitate the rotational motion of
square tracers.
We estimate DT of tracers by using the mean-square

displacement h½ΔrðtÞ�2ið¼ hj~rðtÞ − ~rð0Þj2iÞ and the
Einstein relation. h� � �i denotes an ensemble average and
~rðtÞ is the position vector of the center of mass of a tracer at
time t. There are two formalisms in order to estimate
DR: Einstein and Debye formalisms. In the Einstein
formalism, we calculate the mean square angular displace-
ment h½ΔφðtÞ�2i ¼ hjφðtÞ − φð0Þj2i, where φðtÞ is the
unbounded angle of the vector ~uðtÞ of a tracer at time t.
The vector ~uðtÞ is the unit vector parallel to the side of
each tracer [Fig. 1(a)]. And DR is obtained by using the

relation DR ¼ limt→∞h½ΔφðtÞ�2i=2t. On the other hand, in
the Debye formalism, the rotational correlation function
UlðtÞ of tracers is considered, i.e., UlðtÞ ¼ hexp½ilΔφðtÞ�i,
where an integer l is the order of the rotational correlation
function [15]. According to the Debye approximation,
Ul¼1ðtÞ decays exponentially, i.e., U1ðtÞ ¼ expð−DRtÞ.
For all types of tracers used in this study, both Einstein
and Debye formalisms are consistent with each other. In
Fig. 3, symbols are simulation results for U1ðtÞ’s at
T ¼ 0.9. We plot expð−DRtÞ (solid lines) with values of
DR obtained from the Einstein formalism and find that
Einstein and Debye formalisms match well with each other,
indicating that the values of DR are not affected by the
formalism employed. Higher-order correlation functions
UlðtÞ with l ≥ 2 should also decay exponentially according
to the Debye formalism. However, they become stretched
near the liquid-hexatic phase transition [30]. DR’s for
square tracers obtained from UlðtÞ with l ≥ 2 are hardly
affected by l. On the other hand, for diamonds and distorted
diamonds, DR obtained from UlðtÞ decreases with an
increase in l. But the trends of translation-rotation decou-
pling do not change (Fig. S7 in the Supplemental
Material [30]).
The translational and rotational diffusion of tracers

couple with each other at high temperature (T ≥ 1.5) in
2D colloidal suspensions withDT=DR constant [8].DT and
DR of the tracers, however, decouple at low temperature
near the liquid-to-hexatic phase transition depending on the
tracer shape (Fig. 4). In the case of diamond and square
tracers, the decoupling occurs but with different trends. The
translational diffusion of diamond tracers is enhanced
compared to their rotational diffusion, which is consistent
with previous experiments [1,8]. Surprisingly, in the case of
square tracers, the rotational diffusion is enhanced com-
pared to the translational diffusion. Distorted-diamond
tracers do not show significant decoupling between DT
and DR over the same range of T.
In order to investigate the SE and DSE relations,

we calculate the translational relaxation time (τT) by using
the self part of the intermediate scattering function

FIG. 3 (color online). Rotational time correlation functions
½U1ðtÞ� at T ¼ 0.9. Solid lines are plotted by using the relation
U1ðtÞ ¼ expð−DRtÞ and DR from Einstein formalism.

(a) (b)

FIG. 4 (color). (a)DT=DR as a function of T for different shapes of tracers. (b)DT (black open symbols and left axis) andDR (colored
filled symbols and right axis) as a function of τT=T. Solid lines are fits to simulation results. And a dashed line is a guide with an
exponent of −1.
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[Fsðk; tÞ� of each tracer. Fsðk ¼ 1.25σ−1; tÞ follows the
Kohlrausch-Williams-Watts (KWW) function, i.e., Fsðk ¼
1.25σ−1; tÞ ≈ exp½−ðt=τkÞβk � [1]. We estimate τT by using
τT ≡ τkΓð1=βkÞ=βk, where Γ is the gamma function. Note
that 2π=1.25 corresponds to an approximate size of the
tracers. The SE relation holds regardless of tracer shape
with DT ∼ ðτT=TÞ−1 but the DSE relation fails depending
on the tracer shape [Fig. 4(b)]. Note that if we were to plot
DT as a function of τT instead of τT=T, the SE relation fails
slightly with DT ∼ τ−1.15T even before the freezing transi-
tion, which was reported in Ref. [32]. Instead, DR follows
the fractional DSE relation, i.e., DR ∼ ðτT=TÞξ [5–7]. The
values of ξ are −1.6, −1.13, and −0.44 for diamond,
distorted-diamond, and square tracers, respectively. This
indicates that the rotational diffusion of diamond tracers is
suppressed more than expected by the DSE relation while
the rotational diffusion of square tracers is enhanced more.
In the meantime, the rotational diffusion of distorted-
diamond tracers follows the DSE relation relatively well.
Note that the trend of the DSE breakdown with tracer shape
does not change significantly using DR from the stretched
UlðtÞ with l ≥ 2 [30].
Such qualitative differences in the rotational diffusion of

tracers may be attributed to whether the tracer shape is
similar to the local structure of colloids and also to whether
tracers may hop rotationally or not. Colloids around a
diamond tracer are likely to form a hexagonal structure. On
the other hand, colloids around a square tracer are less
likely to form HBOO [Fig. 2(b)]. If a diamond tracer were
to rotate, the structural similarity between the diamond
tracer and colloids would be broken down transiently. In
order for the diamond tracer to rotate, therefore, the colloids
around the diamond tracer need to move in a collective
fashion, which imposes a free energy barrier on the rotation
of the diamond tracer and makes the diamond tracer
undergo rotational hopping motions. As shown in Fig. 5,
we calculate the rotational displacement distribution func-
tions Gðφm; tÞ≡ hδ½φm − φmðtÞ�i, where φmðtÞ≡ ½φðtÞ −
φð0Þ� − 2mπ for an integer m, ensuring that 0 ≤ φmðtÞ <
2π [22]. There are several peaks in Gðφm; tÞ of diamond
tracers, indicating that the diamond tracers prefer a par-
ticular set of angles, especially integer multiples of π=3.

This suggests that the diamond tracers should undergo
rotational hopping motions by the angle of integer multi-
ples of π=3.
Square and distorted-diamond tracers, on the other hand,

do not hop rotationally as much as diamond tracers. This
is because square and distorted-diamond tracers are not
similar in structure to HBOO of colloids, which
makes larger voids around the tracers [24]. The tracers
undergo relatively normal Brownian rotational diffusion
[Fig. 5(b)] [33].
DT of tracers satisfies the SE relation because DT is

averaged over several dynamic domains. 2D colloids in
hexatic phases consist of dynamic domains of different
mobility. The approximate size of the dynamically corre-
lated domain is estimated by calculating the dynamic
susceptibility χ4ðtÞ [34]. The peak height of χ4ðtÞ reaches
approximately 25 at T ¼ 0.9, implying that the dynamic
domain size is about 5 [30]. hðΔrÞ2ðtÞi of tracers becomes
linear with time t, only when hðΔrÞ2ðtÞi ≥ 100 [30]. This
indicates that the tracer diffusion enters a Fickian regime
only after tracers should travel over several dynamic
domains and that DT should be averaged over several
dynamic domains, thus DT is obeying the SE relation.
In summary, we perform molecular dynamics simula-

tions for tracers of three different shapes in 2D colloids.
Around T ¼ 1, 2D colloids undergo the liquid-to-hexatic
phase transition and 2D colloids construct a quasi-long-
range HBOO. We find that the translation and rotation of
tracers decouple around T ¼ 1, but with different trends
depending on whether the tracer shape is similar to HBOO
of colloids. In the case of diamond tracers, their shape is
similar to HBOO, thus making the diamond tracers undergo
rotational hopping motions and suppressing their rotational
diffusion significantly. On the other hand, for square
tracers, there are more voids around the square tracers
because the square tracers are dissimilar to HBOO of
colloids, which enhances the rotational diffusion more than
expected by the DSE relation.
The translation-rotation decoupling phenomena reported

so far were usually attributed to the DH of translation of
tracers. On the other hand, we report a different case where
the translation-rotation decoupling occurs due to the DH of
the rotation of tracers and the breakdown of the DSE
relation. The decoupling closely relates to the similarity
between the tracer shape and the local media structure.
Because tracers are employed as stand-ins to investigate the
dynamics of host media, the effects of tracer shape in 2D
colloids may indicate that the local structure should be
critical to the DH. If the local structure of a certain region
were to match with that of the surrounding (as for the
diamond tracers), the particles in the domain would move
only in collective motions, thus decreasing the mobility.
This tracer shape effect would be also significant in
network-forming liquids such as water, which forms hydro-
gen bond networks.

(a) (b)

FIG. 5 (color). Rotational displacement distribution functions
[Gðφm; tÞ] of (a) diamond and (b) square tracers.
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Our simulation results may call for more investigation on
the connection between DH and the structural motif such as
the LFSs [1–4]. In spite of theweak structural signature in 3D
glass-forming liquids, many studies have been devoted to
eliciting the structural origin ofDH. For example, a LFS such
as the icosahedron structure exists for the Wahnström
mixture [4,35]. Recent studies showed that LFSs had differ-
ent and broad lifetimes [4,35]. Some were short lived and
broke down before the relaxation time of host glass formers.
Others were, on the other hand, long-lived, thus persisting
even after the relaxation time. Long-lived ones might have a
tendency to be associatedwithDH. It would be an interesting
topic of future studies investigating the dynamics of tracers of
different shapes in 3D glass-forming liquids: tracers similar
in structure to long-lived LFSs and tracers similar to short-
lived ones.
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