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The observed single-handedness of biological amino acids and sugars has long been attributed to
autocatalysis. However, the stability of homochiral states in deterministic autocatalytic systems relies on
cross inhibition of the two chiral states, an unlikely scenario for early life self-replicators. Here, we present
a theory for a stochastic individual-level model of autocatalysis due to early life self-replicators. Without
chiral inhibition, the racemic state is the global attractor of the deterministic dynamics, but intrinsic
multiplicative noise stabilizes the homochiral states, in both well-mixed and spatially extended systems.
We conclude that autocatalysis is a viable mechanism for homochirality, without imposing additional
nonlinearities such as chiral inhibition.
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One of the very few universal features of biology is
homochirality: every naturally occurring amino acid is
left-handed (L chiral) while every sugar is right-handed
(D chiral) [1,2]. Although such unexpected broken
symmetries are well known in physics—for example, in
the weak interaction—complete biological homochirality
still defies explanation. In 1953, Charles Frank suggested
that homochirality could be a consequence of chemical
autocatalysis [3], frequently presumed to be the mechanism
associated with the emergence of early life self-replicators.
Frank introduced a model in which the D and L enantiomers
of a chiral molecule are autocatalytically produced from
an achiral molecule A in reactions Aþ D → 2D and
Aþ L → 2L, and the enantiomers are consumed in a chiral
inhibition reaction, Dþ L → 2A [4]. The state of this
system can be described by the chiral order parameter ω
defined as ω≡ ðd − lÞ=ðdþ lÞ, where d and l are the
concentrations of D and L. The order parameter ω is zero at
the racemic state, and �1 at the homochiral states. Frank’s
model has three deterministic fixed points of the dynamics;
the racemic state is an unstable fixed point, and the two
homochiral states are stable fixed points. Starting from
almost everywhere in the D-L plane, the system converges
to one of the homochiral fixed points [Fig. 1(a)].
In the context of biological homochirality, extensions of

Frank’s idea have essentially taken two directions. On the
one hand, the discovery of a synthetic chemical system of
amino alcohols that amplifies an initial excess of one of the
chiral states [5] has motivated several autocatalysis-based
models (see Ref. [6] and the references therein). On the
other hand, ribozyme-driven catalyst experiments [7] have
inspired theories based on polymerization and chiral
inhibition that minimize [8–10] or do not include at all
[11,12] autocatalysis. In contrast, a recent experimental

realization of ribonucleic acid replication using a novel
ribozyme shows such efficient autocatalytic behavior that
chiral inhibition does not arise [13]. Further extensions
accounting for both intrinsic noise [6,14] and diffusion
[15–18] build further upon Frank’s work.
Regardless of the specific model details, all of these

models share the three-fixed-points paradigm of Frank’s
model, namely, that the time evolution of the chiral order
parameter ω is given by a deterministic equation of the
form [6]

dω
dt

¼ fðtÞωð1 − ω2Þ; ð1Þ

where the function fðtÞ is model dependent. However,
the homochiral states arise from a nonlinearity which is
not a property of simple autocatalysis but, for instance in
the original Frank’s model, is due to chiral inhibition
[see Fig. 1(b)]. The sole exception to the three-fixed-points
model in a variation of Frank’s model is the work of Lente
[19], where purely stochastic chiral symmetry breaking
occurs, although chiral symmetry breaking is only partial,
with ω ≠ 0 but jωj < 1.
The purpose of this Letter is to show that efficient early

life self-replicators can exhibit universal homochirality,
through a stochastic treatment of Frank’s model without
requiring nonlinearities such as chiral inhibition. In our
stochastic treatment, the homochiral states arise not as fixed
points of deterministic dynamics, but instead are states
where the effects of chemical number fluctuations (i.e., the
multiplicative noise [20]) are minimized. The mathematical
mechanism proposed here [21–24] is intrinsically different
from that of the class of models summarized by Eq. (1). In
the following, we propose a model which we analytically
solve for the spatially uniform case and the case of two
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well-mixed patches coupled by diffusion. We then show,
using numerical simulations, that the results persist in a
one-dimensional spatially extended system. We conclude
that autocatalysis alone can, in principle, account for
universal homochirality in biological systems.
Stochastic model for well-mixed system.—Motivated in

part by the experimental demonstration of autocatalysis
without chiral inhibition [13], we propose the reaction
scheme below, which is equivalent to a modification of
Lente’s reaction scheme [19] through the additional process
representing the recycling of enantiomers:

Aþ D→
ka
2D; Aþ L→

ka
2L;

A⇌
kn

kd
D; A⇌

kn

kd
L: ð2Þ

Compared to Frank’s model, the chiral inhibition is
replaced by linear decay reactions which model both
recycling and nonautocatalytic production. The rate con-
stants are denoted by k, with the subscript serving to
identify the particular reaction. The only deterministic fixed
point of this model is the racemic state [Fig. 1(c)]. This
model can be interpreted as a model of the evolution of
early life where primitive chiral self-replicators can be
produced randomly through nonautocatalytic processes at
very low rates; the self-replication is modeled by autoca-
talysis, while the decay reaction is a model for the death
process [25].
We now approximate reaction scheme (2) by means of a

stochastic differential equation for the time evolution of the
chiral order parameter, ω, which shows that in the regime
where autocatalysis is the dominant reaction, the functional
form of the multiplicative intrinsic noise from autocatalytic
reactions stabilizes the homochiral states. We consider a
well-mixed system of volume V and total number of
molecules N. As shown in the Supplemental Material
(SM) [26], for N ≫ 1, we obtain the following equation
for ω, defined in the Itō sense [20]:

dω
dt

¼ −
2knkdV
Nka

ωþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kd
N

ð1 − ω2Þ
r

ηðtÞ; ð3Þ

where ηðtÞ is normalized Gaussian white noise [20].
The time-dependent distribution of Eq. (3) can be

computed exactly [24,27]. The stationary distribution [20],

PsðωÞ ¼ N ð1 − ω2Þα−1; with α ¼ Vkn
ka

; ð4Þ

depends on a single parameter, α, where the normalization
constant N is given by

N ¼
�Z þ1

−1
ð1 − ω2Þα−1dω

�
−1

¼ Γðαþ 1
2
Þffiffiffi

π
p

ΓðαÞ : ð5Þ

Equation (4) is compared in Fig. 2 against Gillespie
simulations [28] of scheme (2). For α ¼ αc ¼ 1, ω is
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FIG. 2 (color online). Comparison between the stationary
distribution, Eq. (4) (dashed lines), and Gillespie simulations
of the reactions (2) (markers), for different values of α.
Simulation parameters: N ¼ 103, ka ¼ kn ¼ kd ¼ 1.

(a) (b) (c)

FIG. 1 (color online). (a) Phase portrait of Frank’s model: the racemic state is an unstable fixed point (the red dot), while the
homochiral states are stable fixed points (the green dots). (b) If chiral inhibition is replaced by a linear decay reaction, the ratio of D and L

molecules stays constant. (c) Adding even the slightest amount of nonautocatalytic production of D and L molecules makes the racemic
state (the green dot) the global attractor of the dynamics.
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uniformly distributed. For α ≫ αc, where the nonautoca-
talytic production is the dominant production reaction,
PsðωÞ is peaked around the racemic state, ω ¼ 0. For
α ≪ αc, where autocatalysis is dominant, PsðωÞ is sharply
peaked around the homochiral states, ω ¼ �1. The sim-
ulations were performed for N ¼ 1000, where the analytic
theory is expected to be accurate; for smaller values of N,
the theory is qualitatively correct, but very small quanti-
tative deviations are observable compared to the simula-
tions. For example, for N ∼ 100, αc ∼ 1.005.
The deterministic part of Eq. (3) has one fixed point

at the racemic state, consistent with the phase portrait in
Fig. 1(c). The multiplicative noise in Eq. (3) vanishes at
homochiral states and admits its maximum at the racemic
state. For α ≪ αc, where autocatalysis is dominant, the
amplitude of the noise term in Eq. (3) is much larger than
the amplitude of the corresponding deterministic term. In
this regime, the system ends up at homochiral states where
the noise vanishes.
To understand this result physically, note that the source

of the multiplicative noise is the intrinsic stochasticity of
the autocatalytic reactions. While, on average, the two
autocatalytic reactions do not change the variable ω, each
time one of the reactions takes place, the value ofω changes
by a very small discrete amount. As a result, over time the
value of ω drifts away from its initial value. Since the
amplitude of the noise term is maximum at racemic state
and zero at homochiral states, this drift stops at one of the
homochiral states. The absence of the noise from autoca-
talysis at homochiral states can be understood by recog-
nizing that at homochiral states, the molecules with only
one of two chiral states D and L are present; hence, only the
autocatalytic reaction associated with that chiral state has a
nonzero rate. This reaction produces molecules of the same
chirality, keeping the system at the same homochiral state
without affecting the value of ω, and, therefore, the variable
ω does not experience a drift away from the homochiral
states due to the autocatalytic reactions.
Since the stationary distribution of ω in Eq. (4) is only

dependent on α, the decay reaction rate, kd has no effect on
the steady state distribution of the system. The only role of
this reaction is to prevent the A molecules from being
completely consumed, thus providing a well-defined non-
equilibrium steady state independent of the initial con-
ditions. The parameter α is proportional to the ratio of the
nonautocatalytic production rate, kn, to the self-replication
rate, ka. In the evolution of early life, when self-replication
was a primitive function, ka would be small and the value of
α would therefore be large; however, as self-replication
became more efficient, the value of ka would have
increased and thus α would have decreased. Therefore,
in our model, we expect that life started in a racemic state,
and it transitioned to complete homochirality through the
mechanism explained above, after self-replication became
efficient (i.e., when α ≪ αc).

It is important to note that all of the previous mechanisms
suggested for homochirality rely on assumptions that
cannot be easily confirmed to hold during the emergence
of life. However, even if all of such mechanisms fail during
the origin of life, our mechanism guarantees the emergence
of homochirality since it only relies on self-replication and
death, two processes that are inseparable from any living
system.
Stochastic model with spatial extension.—We now turn

to the study of reaction scheme (2) generalized to the
spatially extended case [29]. We discretize space into a
collection of M patches of volume V, indexed by i. The
geometry of the space is defined by hii—the set of patches
that are nearest neighbor to patch i (e.g., for a linear chain,
hii ¼ fi − 1; iþ 1g). We indicate the molecules of species
A in patch i by Ai and similarly for the other species. Each
patch is well mixed and reactions (2) occur within, while
molecules can diffuse between neighboring patches with
diffusion rate δ. In summary, the following set of reactions
defines the spatial model:

Ai⇌
kn

kd
Di; Ai⇌

kn

kd
Li; i ¼ 1;…;M;

Ai þ Di→
ka
2Di; Ai þ Li→

ka
2Li;

Di⇌
δ
Dj; Li⇌

δ
Lj; j ∈ hii: ð6Þ

We now derive the following set of coupled stochastic
differential equation for the time evolution of the chiral
order parameter ωi, of each patch i (see the SM [26])

dωi

dt
¼ −

2knkdV
Nka

ωi þ δ
X

j∈hii
ðωj − ωiÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kd
N

ð1 − ω2
i Þ

r
ηiðtÞ þ

ffiffiffiffi
δ
N

r
ξið~ω; tÞ; ð7Þ

where now N represents the average number of molecules
per patch, ηi’s are independent normalized Gaussian white
noises, ξi’s are zero mean Gaussian noise with correlator

hξiðtÞξjðt0Þi ¼
�
2
X

k∈hii
ð1 − ωiωkÞδi;j

þ ðω2
i þ ω2

j − 2ÞχhiiðjÞ
�
δðt − t0Þ; ð8Þ

and χhiiðjÞ is equal to one if j ∈ hii and zero otherwise.
In order to see how the coupling of well-mixed patches

affects their approach to homochirality, it is instructive to
consider the simplest case of two adjacent patches (M ¼ 2).
In the two-patch model, various scenarios can happen: the
system may not exhibit homochirality (ω1 ∼ ω2 ∼ 0); each
patch can separately reach homochirality (ω1 ¼ �1 and
ω2 ¼ �1); the system exhibits global homochirality
(ω1 ¼ ω2 ¼ �1). We first analyze the condition for each
patch reaching homochirality using perturbation theory, in
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the case of slow diffusion. The stationary probability
density function of the chiral order parameter of a single
patch, QsðωÞ, is defined by

QsðωÞ ¼
Z þ1

−1
Qsðω;ω2Þdω2 ¼

Z þ1

−1
Qsðω1;ωÞdω1; ð9Þ

where Qsðω1;ω2Þ is the joint probability distribution of ω1

and ω2 at steady state from Eq. (7). If δ ∼ kd=N or smaller,
then (see the SM [26]) the stationary distribution reads

QsðωÞ ¼ Zð1 − ω2ÞαþðδN=2kdÞ−1; ð10Þ
where Z is a normalization constant. This result shows that
the critical α in a single patch, up to the first order
correction in δ, is given by

αpatchc ≈ 1 − δ
N
2kd

; for δ ≈ 0: ð11Þ

We can now turn to the case of high diffusion. Recall that
the patches are defined as the maximum volume around a
point in space in which the system can be considered well
mixed. This can be interpreted as the maximum volume in

which diffusion dominates over the other terms acting on
the variable of interest (in this case ω). From Eq. (7), this
condition is fulfilled for δ ∼ 2kdα=N. In the vicinity of the
transition, α is on the order of one; therefore, the condition
becomes δ ∼ kd=N. For δ ≫ kd=N, the whole system can
be considered well mixed, and we can find the critical value
of α for each patch, starting from αc ¼ 1, from the well-
mixed results, and using as volume the volume of the whole
system, i.e., MV. This indicates that, in a single patch,

αpatchc ≈
1

M
; for δ ≫ 0: ð12Þ

A simple formula that interpolates between these extreme
limits, asymptotic to 1=M (with M ¼ 2) for large δ and to
Eq. (11) for small δ, is

αpatchc ¼ δþ 2δ�

2δþ 2δ�
; δ� ¼ kd

N
: ð13Þ

Figure 3 shows agreement between αpatchc , measured
from Gillespie simulations of the two-patch system, and
Eq. (13). At the parameter regime below the αc curve in
Fig. 3, individual patches are homochiral. Also, we find
that the correlation between the homochiral states of the
two patches increases with diffusion rate δ, and the patches
become completely correlated when δ ∼ kd=N or more. In
this regime the system reaches global homochirality.
This latter result suggests that in the spatially extended

model, when autocatalysis is the dominant reaction
(i.e., α is small enough) and when the diffusion rate is
in the order of kd=N or larger, all patches converge to the
same homochiral state. Figure 4 shows the dynamics
of a Gillespie simulation of a one-dimensional chain of
100 patches, initializes at the racemic state, in the pure
autocatalytic limit (kn → 0). Very quickly, small islands of
different homochirality (blue and red) are formed. Islands
of opposite chirality compete against each other, until
the system reaches global homochirality. Note that for

FIG. 3 (color online). Parameter αpatchc in the two-patch
system as a function of the diffusion rate δ. Gillespie
simulations (markers) are compared against Eq. (11) (the solid
blue line) and Eq. (13) (the dashed red line). Simulation
parameters as in Fig. 2.

FIG. 4 (color online). Gillespie simulation of scheme (6) for a one-dimensional system ofM ¼ 100 patches, starting from the racemic
state and ending with all of the patches in the same homochiral state, ω ¼ −1. Simulation parameters: N ¼ 1000, ka ¼ kd ¼ 1,
δ ¼ 10−3, and kn ¼ 0.
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δ ∼ kd=N we can treat the diffusion process deterministi-
cally by ignoring the last term in Eq. (7). In this regime,
Eq. (7) is the same as the equation describing the one-
dimensional voter model, implying that the transition to
homochirality is in the universality class of compact
directed percolation [30].
In conclusion, a racemic population of self-replicating

chiral molecules far from equilibrium, even in the absence
of other nonlinearities that have previously been invoked,
such as chiral inhibition, transitions to complete homo-
chirality when the efficiency of self-replication exceeds a
certain threshold. This transition occurs due to the drift of
the chiral order parameter under the influence of the
intrinsic stochasticity of the autocatalytic reactions. The
functional form of the multiplicative intrinsic noise from
autocatalysis directs this drift toward one of the homochiral
states. Unlike some other mechanisms in the literature, this
process does not require an initial enantiomeric excess.
In our model, the homochiral states are not deterministic
dynamical fixed points but are instead stabilized by
intrinsic noise. Moreover, in the spatial extension of our
model, we have shown that diffusively coupled autocata-
lytic systems synchronize their final homochiral states,
allowing a system solely driven by autocatalysis to reach
global homochirality. We conclude that autocatalysis
alone is a viable mechanism for homochirality, without
the necessity of imposing chiral inhibition or other
nonlinearities.
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