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We report numerical simulations on granular shear flows confined between two flat but frictional
sidewalls. Novel regimes differing by their strain localization features are observed. They originate from
the competition between dissipation at the sidewalls and dissipation in the bulk of the flow. The effective
friction at sidewalls is characterized (effective friction coefficient and orientation of the friction force) for
each regime, and its interdependence with slip and force fluctuations is pointed out. We propose a simple
scaling law linking the slip velocity to the granular temperature in the main flow direction which leads
naturally to another scaling law for the effective friction.
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Recent progress has been made in the theoretical
description of the rheology of granular materials (e.g.,
[1–8]). However, a scientific bottleneck still prevents the
use of those theories in real configurations: the modeling
of the interaction of the granular material with a solid
boundary and its implication on the rheology of the system
[9,10]. Yet, such interactions are crucial to understand shear
banding that is a widespread phenomenon in slow granular
flows. They are also essential for the comprehension
of many industrial and agricultural applications (silos,
hoppers, chutes, mixers, and blenders) and geophysical
phenomena, for example, the mobility of avalanches or the
cratering due to an impact.
The aforementioned difficulty originates from experi-

mental and numerical evidence that questions the modeling
of a solid interface as a simple boundary condition. Indeed,
the existence of cooperative effects [11,12] in the force
network and in the velocity field prevents the use of a
purely local approach, i.e., an approach in which the local
stresses are simply related to the local shear rate. An
important source of cooperative effects and thus of non-
locality is the mechanical noise of the flow itself [8,13–15].
Thus, the effective friction coefficient of a granular material
flowing on a flat but frictional interface and the corre-
sponding slip velocity are partially controlled by the shear-
induced fluctuations of the force network [16–18], and
their prediction remains a challenge. The understanding of
such interfacial phenomena is of paramount importance
not only for granular flows but also for other complex
fluids displaying wall slip and nonlocal effects such as
emulsions [19], dense suspensions [20,21], foams, etc.
Here, by means of discrete element simulations, we study
the effective friction of a dense granular material confined
in a shear cell. We show that at flat frictional walls, even
if the system is globally below the slip threshold, force
fluctuations trigger slip events, leading to a nonzero slip
velocity and an effective wall friction scaling with a sliding
parameter. These results shed light on the necessity to

introduce fluctuations in theories aiming to capture and
predict the behavior of dense granular flows at the vicinity
of an interface.
Numerical simulations.—We carry out and analyze

numerical simulations of dense granular flows in a 3D
wall-bounded geometry. Simulations are performed by
using the contact dynamics method [22], as implemented
in the LMGC90 open source framework [23]. The flow
configuration [sketched in Fig. 1(a)] is a rectangular cuboid
(length lx ¼ 20d, depth ly ¼ 10d, and variable height lz)
characterized by a periodic boundary condition in the main
flow direction (x), two bumpy walls at the top and at the
bottom, and two lateral flat but frictional walls (normal to

FIG. 1 (color online). (a) Sketch of the wall-bounded flow
configuration. (b) Velocity profiles at the sidewalls along
z obtained for ~V ¼ 10, ~M ¼ 0.2, and different values of the
particle-wall friction coefficient: μpw ¼ 0.05; 0.1; 0.2, and 0.3.
Three patterns of localization appear. (c) Fluctuation of the
x particle velocities at the wall along z for the same set of
parameters. Inset: Ratio of vertical to horizontal fluctuations
versus z.
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the y direction). Gravity acts on the system along z, and the
flow is driven by the motion along x of the bottom wall.
The top wall cannot move on the x and y directions but is
free to move in the z direction, simply according to the
balance between its weight and the force exerted by the
grains. Simulations were performed with N ¼ 10000
slightly polydisperse spheres (uniform number distribution
in the range 0.9d–1.1d) interacting through perfectly
inelastic collisions and Coulomb friction (μ ¼ 0.5). The
coefficient of restitution has nearly no influence on dense
granular flows due to the presence of enduring contacts
[24]. Consequently, we chose perfectly inelastic grains to
maximize dissipation and thus save computation time.
Interactions of particles with the flat walls were also
perfectly inelastic and frictional (with a coefficient of
friction μpw). We performed several simulations varying
the velocity of the bottom wall V, the weight of the upper
wall M, and the particle-wall friction coefficient μpw. The
first two parameters can be made dimensionless, for
example, by considering a particle Froude number
~V ¼ V=

ffiffiffiffiffi
gd

p
and the ratio between the mass of the top

wall and the mass of the grains, ~M ¼ M=Nm, where m is
the average particle mass. This flow configuration is
interesting for studying wall friction, since slip velocity
and fluctuations are less dependent on the wall properties
than if shear acted on planes parallel to the wall. This does
not mean that the wall properties do not affect velocity
profiles, but that the problem is a little more conceptually
decoupled than, for example, in inclined chute flows.
Preliminary analysis indeed showed that velocity and
velocity fluctuation profiles were nearly uniform in the
y direction for the range of parameters considered in this
study ( ~V ¼ 0.1–10, ~M ¼ 0.2–2, and μpw ¼ 0.05–0.3). The
profiles at the wall can therefore be taken also as a reference
for the internal behavior; shear principally acts on a plane
orthogonal to the wall. It is clear that not all variables are
uniform in y: for example, solid fraction ϕ is influenced by
the presence of walls and displays fluctuations around a
decreasing value when approaching the wall [25]. On the
other hand, due to wall friction, stress components σyz and
σyx (and their symmetric counterparts) will vary with y. In
this work, we focus mainly on wall behavior, postponing a
full analysis of the behavior of the system including also
profiles in the y direction to a more detailed study.
We computed average profiles along z by performing

averages on slices with a thickness 2d in the vertical
direction. The streamwise effective wall friction coefficient
at the lateral walls is estimated for each slice as the ratio of
the average force in the flow direction x and the average
force in the direction normal to the wall y: μw ¼ hFxi=hFyi
[16]. This corresponds to the stress ratio σyx=σyy at the wall.
Profiles of velocity fluctuations in the x and z direction
(which are related to granular temperature) are also
calculated as Tx ¼ hðvx − hvxiÞ2i, Tz ¼ hðvz − hvziÞ2i,
where the fluctuations are correctly computed with respect

to the average velocity value extrapolated at the particle
center [26]. Concerning bulk profiles, we computed for
each slice the average value of solid fraction ϕ (not
discussed here) and stress components σxx, σyy, σzz, and
σxz. The latter allow us to define a bulk friction coefficient
μxz ¼ σxz=p, where p ¼ ðσxx þ σyy þ σzzÞ=3.
Flow profiles.—An example of the velocity profiles

obtained in this configuration is given in Fig. 1(b), for
~V ¼ 10, ~M ¼ 0.2, and different values of the particle-wall
friction coefficient. Profiles typically display shear locali-
zation. For the range of parameters considered in this study,
three regimes appear: (A) for high ~M and/or high wall
friction, shear is localized at the bottom; (B) for low ~M and
low wall friction, shear is localized near the top; and (C) for
low ~M and intermediate wall friction, a central plug can
form with two shear zones near the bumpy walls.
Concerning such profiles, in the following we will refer
to the “shear zone” as the zone where most of the velocity
variation occurs (say, 99%) and to the “creep zone” as the
nearly stationary remaining part. For regimes B and C, far
from the shear band, it is better to refer to a “plug flow
zone.” In shear zones, velocity profiles are characterized
by an exponential variation whose characteristic length is
mainly a function of μpw and ~M. If ~M ≫ 1, bottom
localization seems to be more probable and the character-
istic length decreases with μpw; it is reasonable to infer that
a linear profile should be obtained for sufficiently large ~M
and sufficiently low μpw. Such a coexistence of different
localization patterns was recently reported for a different
flow configuration [27]. Figure 1(c) displays sample
profiles of streamwise velocity fluctuations Tx. These agree
qualitatively with shear rate profiles, with higher fluctua-
tions in the shear zones. Vertical fluctuations, as shown in
the inset in Fig. 1(c), tend to be more important than
streamwise ones in the creep zone in regime A. In the
shear zones, there was also evidence of the formation of
secondary (weak) convective rolls, similar to those
observed in Refs. [28,29]. These rolls appeared to be
confined to the shear zone, to be stronger for regime C
(where the shear zone was larger), and were characterized
by particles moving upwards near the flat walls and
descending in the center of the channel. The localization
pattern observed, as well as the convective instability, is
very new and interesting and will be addressed in a
detailed study.
Effective wall friction.—Figures 2(a) and 2(b) display

profiles of the effective wall friction coefficient, for
~V ¼ 10, ~M ¼ 0.2, and different values of μpw. It is clear
that, as was seen for 2D flows [18] or in 3D confined
gravity-driven flows [30], μw=μpw decreases with μpw.
These profiles are strongly related to velocity profiles: in
regime B, far from the shear band, grains move as a plug in
the x direction with velocity V. There are no stick events, so
the effective coefficient of friction in the plug zone is equal
to μpw. In the shear zone, stick-slip events may emerge, and
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therefore μw < μpw [16]. For the simulations where shear is
localized at the bottom (regime A), we find a decreasing
profile of μw versus z in the shear band and a less
pronounced variation in the creep zone. This can be
explained by the fact that, reasonably, stick-slip events
become more and more probable when we approach the
creep zone [16]. When a central plug forms (regime C), a
more complex μw profile may appear, displaying a flat local
maximum corresponding to the plug zone. These results
confirm what was already known for 2D flows, that is, the
interdependence of effective friction, slip, and fluctuations
[17,18]. The effective bulk friction coefficient μxz as shown
in Fig. 2(c) qualitatively follows the behavior of velocity
fluctuations and shear rate. An increase in wall friction
contributes to weakening of the effective bulk friction in the
creep zone. The effective bulk friction coefficient being
generally higher than the effective wall friction coefficient,
in the creep zone they can take similar values.
Force orientation at the wall.—The probability density

function of tangential force orientation depends on the flow
regime and flow zone. For regime B, in the plug flow zone,
tangential forces are purely oriented along x (counterflow),
and in the shear zone only slight differences exist. For
regimes A and C, in the shear zone [see, for example,
curves at z ¼ 3d in Figs. 3(a) and 3(b)], the most likely
direction is again the x direction, but significant vertical
fluctuations are present. The likelihood of such transversal

fluctuations increases with the wall friction. For these two
regimes, the probability of finding vertical force fluctua-
tions is more important for grains close to the top stationary
wall. In the creep flow zone of regime A [curve at z ¼ 36d
in Fig. 3(b)], we see that vertical force orientations can
become more probable than horizontal ones. This is
obviously related to the incidence of vertical velocity
fluctuations discussed previously. The average tangential
force is always directed opposite to the motion, but a very
wide distribution of orientations is present. The probability
distribution function (PDF) is roughly ellipsoidal. For
regime C in the plug flow zone, due to the partial slip
of the plug, the PDF is similar to the creep zone PDF but is
bent towards the x direction, assuming a sort of “bunny
ears” shape. Note that the reported behavior is similar to
that obtained for confined granular flows on a heap, where
a modification of the orientation of the friction force which
is significant in the creeping zone has been reported [16].
Wall friction scaling.—In order to study more in detail

effective wall friction, we discuss now its scaling on system
parameters. For 2D dense flows on an incline, it was shown
that μw=μpw scales with a dimensionless slip length defined
as vslip=_γd [18]. The origin of this scaling was postulated to
be the presence of force and velocity fluctuations, yielding
stick-slip events. The inverse of the shear rate _γ−1 was there
used as an estimate of the time scale of force fluctuations. In
the 3D flow configuration discussed here, this scaling has
some drawbacks and seems not to hold well in the creep
zone. One reason for this behavior is that _γd may not be a
good velocity scale for slip events in creeping flows, as
seems to be the case for dense flows. Another estimate
for a velocity scale related to force fluctuations may be the
correlation of velocity fluctuations, e.g., granular temper-
ature. The latter quantity was indeed used as a velocity scale
in boundary conditions for flat frictional walls in the kinetic
theory of granular gases [31–33]. Our simulations show that
the square root of the velocity fluctuations in the x direction
(

ffiffiffiffiffi
Tx

p
) globally scales with the shear rate (see Fig. 4).

FIG. 2 (color online). Profiles along z of (a) the effective wall
friction coefficient μw and of (b) μw rescaled on the particle-wall
friction coefficient μpw, for ~V ¼ 10, ~M ¼ 0.2, and different
values of μpw ¼ 0.05; 0.1; 0.2; 0.3. μw=μpw decreases with μpw.
(c) Profiles of the bulk friction coefficient μxz ¼ σxz=p along z.
The labels are the same as those used in Fig. 1(b).

FIG. 3 (color online). Polar representation of the probability
density function of tangential force orientation at the wall, for
~V ¼ 1, ~M ¼ 0.2, at several heights z (¼ 3d, 9d, 18d, and 36d),
for (a) μpw ¼ 0.1 (regime C) and (b) μpw ¼ 0.3 (regime A).
Statistics are performed on a 5d-wide slice centered on the given
z value.
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However, often in the creep or plug zone, when _γ decreases,
the fluctuations decrease less rapidly, eventually displaying
a plateau. This is evident from the inset in Fig. 4, whereffiffiffiffiffi
Tx

p
=_γd is shown to increase when decreasing the inertial

number I ¼ _γd=
ffiffiffiffiffiffiffiffi
p=ρ

p
(creep is found for I → 0). The

reason for this plateau can be related to the nonlocality of the
rheology: it was already shown that fluctuations propagate
far from the shear zone [14,15,34]. Such nonlocal effects can
be modeled by the diffusion of fluctuating energy, as in
kinetic theories of dense granular flows [35,36], or by
fluidity-based models [1]. Note that the plateaus are even
more evident for vertical velocity fluctuations (

ffiffiffiffiffi
Tz

p
, not

shown), which are probably influenced by vertical fluctua-
tions of the position of the upper wall.
The correspondence between the plateau of the curvesffiffiffiffiffi
Tx

p
versus d∂vx=∂z and the μw profile in the creep zone

suggests to test the
ffiffiffiffiffi
Tx

p
scaling for the slip velocity. This

test is shown in Fig. 5, where we display the rescaled
effective friction coefficient μw=μpw as a function of
vx=

ffiffiffiffiffi
Tx

p
. Note that it is preferable to use the streamwise

velocity scale
ffiffiffiffiffi
Tx

p
(and neither

ffiffiffiffiffi
Tz

p
nor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tx þ Tz

p
) given

that also μw is based on the forces oriented along the main
flow direction. Note also that Ty might be a better choice
for more dilute flows where most grains interacting with
sidewalls bounce on them. In the present study, flows are
dense, and grains mostly slide on sidewalls. We can see that
the scaling performs globally well on several orders of
magnitude. There are indeed some deviations from the
master curve, in particular, some simulations in regime C
(orange squares, diamonds, and triangles in Fig. 5) which

show slightly higher values of μw=μpw than the other
simulations. This could be related to the presence of
convective structures discussed previously. This kind of
structure is known to affect effective friction [28,29] and
may be the cause of the slight discrepancy between these
simulations and the rest of the set. The functional form of
the scaling appears to be the same as in Ref. [18] (with the
exception of the different velocity scale):

μw
μpw

¼ ðvx=
ffiffiffiffiffi
Tx

p ÞB
Aþ ðvx=

ffiffiffiffiffi
Tx

p ÞB :

For the present case, we estimated A ¼ 1.2 and B ¼ 1.7 by
curve fitting. It should be pointed out that this scaling is
similar to the boundary conditions of kinetic theories of
granular flows [31–33] and used in the extension of the
kinetic theory proposed by Jenkins and Berzi [35,37].
Moreover, a connection also exists with the nonlocal
theories recently developed [1–5], since the granular fluid-
ity, i.e., the ratio of the pressure to the viscosity, can be
shown to scale with the square root of the granular
temperature.
Conclusions.—Results presented in this work confirm

for 3D flows the conceptual framework which was sug-
gested in Ref. [17]; at flat frictional walls, force fluctuations
trigger slip events even if the system is globally below the
slip threshold. These stick-slip events produce (i) a nonzero
average slip velocity and (ii) a variable effective wall
friction coefficient which scales on a dimensionless slip
parameter. It is interesting to see that this picture of wall slip
(fluctuations leading to a finite probability of yielding) is
conceptually the same as that at the heart of recent findings
on granular creep flows [14,15]. The scaling of the slip
velocity on the rms velocity fluctuations supports also the
idea that fluctuations are a key ingredient that should be

FIG. 5 (color online). Rescaled effective wall friction coeffi-
cient versus the dimensionless slip parameter vx=

ffiffiffiffiffi
Tx

p
. The

inset shows that a power law relationship holds between
½ðμw=μpwÞ=ð1 − μw=μpwÞ� and vx=

ffiffiffiffiffi
Tx

p
. The labels are the same

as those used in Fig. 4.

FIG. 4 (color online). Comparison between a velocity scale
based on shear rate, d∂vx=∂z, and one based on x-velocity
fluctuations,

ffiffiffiffiffi
Tx

p
for ~M ¼ 0.2 and ~V ¼ 0.1 (square), ~M ¼ 0.2

and ~V¼1 (diamond), ~M¼0.2 and ~V ¼ 10 (downward triangle),
and ~M¼ 2 and ~V¼ 1 (circle). The colors (gray scales) correspond
to different grain-wall friction coefficients [see Fig. 1(b)]. The
fluctuational velocity scale displays a plateau for each simulation
for low shear rates. Inset:

ffiffiffiffiffi
Tx

p
=_γd increases when decreasing

inertial number I. The labels are the same as those used in
Fig. 1(b).
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included in any model aiming to describe dense granular
flows at the vicinity of an interface. The scaling law can be
used as a boundary condition in a nonlocal theory for dense
granular flow implying granular temperature [35,37]. In
order to solve such a model, an additional constraint is
needed: a possible choice is to equate the flux of fluctuating
energy at the boundary to the dissipation, as in kinetic
theories. An expression for the energy dissipation based on
frictional sliding should be studied. In Ref. [18], a scaling
based on the shear rate was shown to be effective for 2D
inclined chute flows. In that case, given that the shear acted
in planes parallel to the wall, the scaling law could be
interpreted as a Navier partial slip law. The present
contribution shows that such a partial slip boundary
condition involving the velocity gradient normal to the
wall cannot be universal. Fluctuations trigger slip events
and therefore affect effective friction, whether shear planes
are parallel or not to the wall. Thus, if a scaling on shear rate
was valid in that case, it was probably because the shear
rate was a good measure of the scale of fluctuations for the
considered data.
Understanding the behavior of granular materials at a flat

but frictional interface is a preeminent scientific challenge.
In this work, we demonstrated the relevant role of fluctua-
tions and pushed forward our understanding of effective
wall friction and wall slip. In the future, it will be
interesting to test the framework relating fluctuations, wall
friction, and wall slip in other contexts, the problem of
interface rheology being common to other divided media,
such as foams, clays, or gels. The effect of grain shape
should also be explored, since it may influence the wall-slip
velocity and thus the reported scalings.

The numerical simulations were carried out at the CCIPL
(Centre de Calcul Intensif des Pays de la Loire) under the
project MTEEGD.
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