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In integrable many-particle systems, it is widely believed that the stationary state reached at late times
after a quantum quench can be described by a generalized Gibbs ensemble (GGE) constructed from their
extensive number of conserved charges. A crucial issue is then to identify a complete set of these charges,
enabling the GGE to provide exact steady-state predictions. Here we solve this long-standing problem for
the case of the spin-1=2 Heisenberg chain by explicitly constructing a GGE which uniquely fixes the
macrostate describing the stationary behavior after a general quantum quench. A crucial ingredient in our
method, which readily generalizes to other integrable models, are recently discovered quasilocal charges.
As a test, we reproduce the exact postquench steady state of the Néel quench problem obtained previously
by means of the Quench Action method.
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Introduction.—Understanding and describing the equili-
bration of isolated many-particle systems is one of the main
current challenges of quantum physics. The presence of
higher conserved charges (above the Hamiltonian) is linked
to the absence of full relaxation to a thermalized state; the
conjectured appropriate framework to characterize the
steady-state properties in such a situation is the generalized
Gibbs ensemble (GGE) [1], inwhich all available charges are
ascribed an individual “chemical potential” set by the initial
conditions, and the steady state is the maximal entropy state
fulfilling all the constraints associated to the conserved
charges [2–27]. The basic idea underlying the GGE is as
follows. Let H ≃Hð1Þ be the Hamiltonian of an integrable
model, and fHðnÞg a set of conserved charges fulfilling
½HðnÞ; HðmÞ� ¼ 0. The situation we are interested in is that
of a quantum quench, where we initially prepare our system
in the ground state jΨð0Þi of a local Hamiltonian H0 and
then consider unitary time evolution with respect to our
integrable Hamiltonian

jΨðtÞi ¼ e−iHtjΨð0Þi: ð1Þ
We assume that we are dealing with a generic case where, in
the thermodynamic limit, jΨð0Þi cannot be expressed as a
linear combination of any finite number of eigenstates ofH.
At late times after the quench expectation values of local
operators approach stationary values

hOiΨ ¼ lim
t→∞

hΨðtÞjOjΨðtÞi: ð2Þ

TheGGEhypothesis asserts that these expectationvalues can
be calculated as hOiΨ ¼ Trðϱ̂GGEOÞ from a statistical
ensemble with a density matrix

ϱ̂GGE ¼ 1

Z
exp

�
−
X
n

βnHðnÞ
�
: ð3Þ

Here Z is a normalization, and the Lagrange multipliers βn
are fixed by the initial conditions

lim
th

Trðϱ̂GGEHðnÞÞ
N

¼ lim
th

hΨð0ÞjHðnÞjΨð0Þi
N

; ð4Þ

where N is the system size and limth denotes the thermody-
namic limit N → ∞. Equation (4) is a direct consequence of
the fact that HðnÞ are conserved charges. While the GGE
hypothesis has been successfully verified for many systems
mappable to free particles, in interacting theories such as the
spin-1=2 Heisenberg XXZ chain the question of precisely
which charges need to be included in Eq. (3) arises. In
Refs. [17,18,20] a GGE based on the known conserved local
charges [28] was constructed and used to determine steady-
state averages of observables [20]. Subsequent analyses
[21,22] by the Quench Action (QA) approach [14] demon-
strated that this GGE fails to predict the correct steady-state
properties. This failure was shown to be related to the
existence of bound states [21] (see also [29,30]), which are
known to be a generic feature in quantum integrable models.
These results posed the question of whether the GGE is
conceptually faulty, or whether there could exist hitherto
unknown charges that need to be taken into account in its
construction.
In this Letter, we settle this issue by explicitly showing

how to repair the GGE in Heisenberg chains, by comple-
menting it with recently discovered additional families of
conserved charges [31]. Crucially, these “quasilocal”
charges fulfil a weaker form of locality than the previously
known ones. We derive a set of fundamental identities
between the initial-state expectation values of these
charges, and the density functions characterizing the steady
state. An explicit test of our construction is provided by a
quantum quench from the Néel state to the XXZ chain: we
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demonstrate that our GGE correctly recovers the stationary
state, the form of which is known exactly from the QA
approach [21,32]. In this way we completely resolve the
above-mentioned conundrum. Our construction shows
that quasilocal conserved charges are in fact crucial for
understanding the nonequilibrium dynamics of quantum
integrable models.
Anisotropic spin-1=2 Heisenberg chain.—We shall con-

sider a completely generic quench protocol from an initial
pure wave function jΨ0i, which is unitarily time evolved
according to the Hamiltonian

H ¼ J
4

XN
j¼1

½σxjσxjþ1 þ σyjσ
y
jþ1 þ Δðσzjσzjþ1 − 1Þ�: ð5Þ

Here J > 0, σαj , α ¼ x; y; z are Pauli matrices acting on
spin-1=2 degrees of freedom, and we consider anisotropy
values in the regime, Δ ¼ coshðηÞ ≥ 1. The Hamiltonian
given by Eq. (5) can be diagonalized byBetheAnsatz [33,34].
Imposing periodic boundary conditions, energy eigenstates
jλi with magnetization Sztot ¼ N=2 −M are labeled by a
set of rapidities λ ¼ fλkgMk¼1 satisfying the Bethe equations,
½sinðλjþiη=2Þ=sinðλj−iη=2Þ�N¼−

Q
M
k¼1½sinðλj−λkþiηÞ=

sinðλj−λk−iηÞ�, j ¼ 1;…;M. The momentum and energy
of a Bethe state are Pλ ¼

P
M
j¼1 pðλjÞ, ωλ ¼

P
M
j¼1 eðλjÞ,

wherepðλÞ ¼ i ln ½sinðλ − iη=2Þ= sinðλþ iη=2Þ� and eðλÞ ¼
−Jπ sinhðηÞa1ðλÞ, where

anðλÞ ¼
1

2π

2 sinhðnηÞ
coshðnηÞ − cos ð2λÞ : ð6Þ

Solutions λ to the Bethe equations are closed under complex
conjugation and consist of so-called strings λn;aα ¼ λnαþ
iη
2
ðnþ 1 − 2aÞ þ iδn;aα ,a ¼ 1;…; n, and λnα ∈ R.Here index

α enumerates a string, n is the string length, a counts rapidities
inside a given string, anddeviationsδn;aα are (for themajority of
states) exponentially small in system size [28,35,36]. The
string centers λnα lie in the interval, ½−π=2; π=2Þ. In the
thermodynamic limit N → ∞ with M=N fixed, one can
describe a state not in terms of individual rapidities, but rather
in terms of a set of functions ρ ¼ fρng∞n¼1 representing string
densities (see Supplemental Material for more info [37]).
Ultralocal GGE treatment.—Exactly solvable

Hamiltonians such as Eq. (5) can be embedded [28] in a
commuting family ½TðλÞ; Tðλ0Þ� ¼ 0 of transfer matrices
[defined in Eq. (15)]. The Hamiltonian and an infinite
number of mutually commuting conserved charges are
obtained by

HðnÞ ¼ i
n!

∂n
λ logTð−iλÞjλ¼iη

2
; ð7Þ

with theHamiltonian readingH¼ J sinhðηÞ
2

Hð1Þ. These charges
are ultralocal in the sense that they can be written as

HðmÞ ¼ P
N
j¼1 h

ðmÞ
j , where the operators hðmÞ

j act nontrivially

on a block of at most m sites adjacent to j. The
GGE constructed in [17,18] was of the form given by
Eqs. (3) and (4), with charges from Eq. (7). The initial values
hðnÞ ¼ limthN−1hΨð0ÞjHðnÞjΨð0Þi of the conserved charges
are conveniently encoded in the generating function [18]

ΩΨ0ðλÞ ¼ lim
th

i
N

D
Ψ0jT−1

�
λþ iη

2

�
∂λT

�
λþ iη

2

�
jΨ0

E

¼
X∞
k¼0

λk

k!
hðkþ1Þ: ð8Þ

Given the GGE density matrix, a “microcanonical”
description of the steady state can be obtained by perform-
ing a generalized Thermodynamic Bethe Ansatz [11,38];
see Supplemental Material for a brief summary [37]. This
results in a representative eigenstate jρΨ0

GGEi labeled by root
density functions ρΨ0

GGE, which has the property that for any
local operator O,

TrðOϱ̂GGEÞ ¼ hρΨ0

GGEjOjρΨ0

GGEi: ð9Þ

Within the generalized Thermodynamic Bethe Ansatz
formalism macrostates can be described either by root
densities of particles, or by densities of holes. Holes can be,
loosely speaking, understood as analogues of unoccupied
states in models of free fermions. In terms of the latter the
state jρΨ0

GGEi is parametrized in terms of the set of positive

functions fρΨ0

n;hg. In [21,32] it was found that the initial
data, Eq. (4), directly determines the hole density of 1-
strings (i.e., vacancies of unbound states), according to the
remarkable identity

ρΨ0

1;hðλÞ¼a1ðλÞþ
1

2π

�
ΩΨ0

�
λþ iη

2

�
þΩΨ0

�
λ−

iη
2

��
: ð10Þ

All other hole densities are fixed by the maximum entropy
principle under the constraints of Eq. (4).
Quench action treatment.—The above GGE treatment

should be compared to an independent calculation using the
QA method [14]. For a generic quench problem, given an
initial state jΨ0i, the time-dependent expectation value of a
generic local observable O can be expressed as a double
Hilbert space summation

hΨðtÞjOjΨðtÞi ¼
X
λ;λ0

e−S
�
λ−Sλ0eiðωλ−ωλ0 ÞthλjOjλ0i; ð11Þ

where Sλ ¼ − ln hλjΨ0i. Here, jλi are eigenstates of the
Hamiltonian driving the postquench time evolution.
Exploiting the fact that in the thermodynamic limit, the
summation over eigenstates can be written as a functional
integral over root densities, which can be evaluated in a
saddle-point approximation (becoming exact in the thermo-
dynamic limit), one finds, in particular, that the steady-state
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expectation values of observables a long time after the
quench can be obtained as

lim
t→∞

lim
th

hΨðtÞjOjΨðtÞi ¼ hρΨ0

QAjOjρΨ0

QAi: ð12Þ

Here jρΨ0

QAi is an eigenstate minimizing the QA SQA½ρ� ¼
2S½ρ� − SYY½ρ�, where S½ρ� ¼ limthReSλ is the extensive
real part of the overlap coefficient in the thermodynamic
limit and SYY½ρ� is the Yang-Yang entropy of the state
[28,35,36]. For the Néel to XXZ quench, the exact overlaps
were obtained in [39] and used in [21,32] to obtain the
exact saddle-point densities ρΨ0

QA representing the steady

state. Crucially, one finds [21,22] that ρΨ0

GGE ≠ ρΨ0

QA, which
in turn leads to different predictions for physical properties
such as spin-spin correlators. This demonstrated that the
ultralocal GGE does not correctly describe the steady state
after a generic quantum quench in the XXZ chain.
Constructing a quasilocal GGE.—Very recently [31]

(see also [40–45]) hitherto unknown conserved charges of
the isotropic (Δ ¼ 1) Heisenberg model were discovered.
These operators are not local in the sense that they cannot
be represented as a spatially homogeneous sum of finitely
supported densities, but rather quasilocal, meaning [31] that
their Hilbert–Schmidt norms scale linearly with system size
and their overlaps with locally supported operators become
independent of N in the limit of large system size.
Moreover, they are linearly independent from the known
local charges generated from the spin-1=2 transfer matrix.
Until now, the impact of these charges on local physical
observables has not been quantified.
Our first step is to construct a family of quasilocal

conserved charges for Δ ≥ 1 by generalizing the procedure
of [31]. The starting point is the q-deformed L operator,

Lðz; sÞ ¼ 1

sinhðηÞ ½sinhðzÞ cosh ðηs
zÞ ⊗ σ0

þ coshðzÞ sinh ðηszÞ ⊗ σz

þ sinhðηÞðs− ⊗ σþ þ sþ ⊗ σ−Þ�; ð13Þ
whose auxiliary-space components are given by q-deformed
spin-s representations with s ¼ 1

2
; 1; 3

2
;…, obeying commu-

tation relations ½sþ; s−� ¼ ½2sz�q, ½sz; s�� ¼ �s� and acting
in a ð2sþ 1Þ-dimensional irreducible representation, Vs ≅
C2sþ1 ¼ lspfjki; k ¼ −s;…; sg,

szjki ¼ kjki; s�jki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sþ 1� k�q½s∓k�q

q
jk� 1i; ð14Þ

with ½x�q ¼ sinh ðηxÞ= sinhðηÞ. By means of higher-spin
auxiliary (fused) transfer matrices defined via ordered
products of L-operators

TsðzÞ ¼ Tra½La;1ðz; sÞ…La;Nðz; sÞ�; ð15Þ
[where T1=2ðzÞ≡ TðzÞ was used in Eq. (7)] we define
families of conserved operators

XsðλÞ¼ τ−1s ðλÞfTsðz−λ ÞT 0
sðzþλ Þg; z�λ ¼�η

2
þ iλ; ð16Þ

with T 0
sðzÞ≡ ∂zTsðzÞ and f•g denoting the traceless

part. The normalization reads τsðλÞ ¼ f½−ðsþ 1
2
Þηþ iλ�×

f½ðsþ 1
2
Þηþ iλ� with fðzÞ ¼ ½sinhðzÞ= sinhðηÞ�N . In [31] it

was shown for the isotropic case that these charges are
quasilocal for all s ¼ 1

2
; 1; 3

2
;…, and λ ∈ R. A rigorous proof

for general Δ > 1 is currently under construction [46].
A central piece of our work is the extraction of the

thermodynamically leading part of the quasilocal charges
fXsg∞s¼1=2 when operating on an arbitrary Bethe state. It
proves useful to resort to the so-called fusion relations
[47–50] (T-system) for higher-spin transfer matrices,

Ts

�
zþ η

2

�
Ts

�
z−

η

2

�
¼ f

�
zþ

�
sþ1

2

�
η

�
f

�
z−

�
sþ1

2

�
η

�

þTs−1=2ðzÞTsþ1=2ðzÞ; ð17Þ
with the initial conditionT0ðzÞ≡ fðzÞ. There exists a closed-
form solution to the above recurrence relation in terms of
Baxter’s Q-operators [48]

TsðzÞ ¼ Q
�
zþ

�
sþ 1

2

�
η

�
Q
�
z −

�
sþ 1

2

�
η

�

×
X2s
l¼0

f½zþ ðl − sÞη�
Q½zþ ðl − s − 1

2
Þη�Q½zþ ðl − sþ 1

2
Þη� :

ð18Þ
The eigenvalues of the Q-operators [in what follows, in
view of commutations ½Tsðz1Þ; Qðz2Þ� ¼ 0∀s, zi ∈ C, we
slightly abuse notation by using the same symbol for an
operator and its eigenvalue] are determined by the position of
Bethe roots,QðzÞ ¼ Q

M
k¼1 sinh ðzþ iλkÞ. A key observation

is that, in the thermodynamic limit, the spin-s transfer matrix
evaluated at z−λ (zþλ ) is simply given by the l ¼ 0 (l ¼ 2s)
term in the sum in Eq. (18). This then gives

lim
th

Tsðz�λ Þ ¼ lim
th

f

�
�
�
sþ 1

2

�
ηþ iλ

�
Qð∓sηþ iλÞ
Qð�sηþ iλÞ :

ð19Þ
The latter analysis is consistent with limthτ

−1
s ðλÞTsðz−λ Þ×

Tsðzþλ Þ ¼ 1, representing a thermodynamic version of an
inversion identity (see [31]) that can be proven in an entirely
operatorial way, without making reference to the Bethe
eigenstates. At this point it is convenient to define modified
conserved operators

X̂sðλÞ ¼ Tð−Þ
s ðz−λ ÞTðþÞ0

s ðzþλ Þ; ð20Þ

whereTð�Þ
s ðzÞhavethesamestructureasinEq.(15)butinvolve

L-operators, Lð�Þðz; sÞ ¼ Lðz; sÞ sinhðηÞ=½sinh ðz� sηÞ�. In
the thermodynamic limit a quasilocal conserved operator
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X̂sðλÞ only differs from XsðλÞ by a multiple of identity,
X̂sðλÞ ¼ XsðλÞ þ tsðλÞ1, with tsðλÞ ¼ ½2s=ð2sþ 1Þ�×
fsinh ½ð2sþ 1Þη�=½sinh2ðηÞ�gτ−1s ðλÞ. We can now define a
two-parameter family of conserved charges

Hðnþ1Þ
s ¼ 1

n!
∂n
λ X̂sðλÞjλ¼0: ð21Þ

By construction we have ½HðnÞ
s ; HðmÞ

s0 � ¼ 0 and fHðnÞ
1=2g∞n¼1

precisely recover theultralocalconservationlawsfromEq. (7).
We are thus in a position to define the density matrix of our
GGE. It is given by

ϱ̂GGE ¼ 1

Z
exp

�
−

X∞
n;s¼1

βsnH
ðnÞ
s=2

�
; ð22Þ

where the Lagrange multipliers βsn are fixed by initial con-
ditionsgivenbyEq.(4).OurassertionisthatEq.(22)providesa
correct description of the stationary behavior after a general
quench to the spin-1=2 XXZ chain (in the regime Δ ≥ 1). In
order toprovethis it suffices toestablishthat theinitialvaluesof
our conserved charges uniquely specify a macrostate.
Let us now derive the main result of our Letter.

Analogously to what was found in [21,32] for the ultralocal
charges, the values of the quasilocal charges associated
with a spin-s transfer matrix are in one-to-one correspon-
dence with functions ρΨ0

2s;hðλÞ, which in turn specify (see
Supplemental Material [37]) a unique macrostate (namely,
the GGE saddle-point state).
Our starting point is the following expression for the

spectrum of fX̂sg∞s¼1=2, valid for the large system size
[cf. Eq. (19)]:

X̂sðλÞ ¼ −i∂λ log
Qð−sηþ iλÞ
Qðsηþ iλÞ þ oðNÞ

¼
XM
k¼1

2 sinh ð2sηÞ
cos½2ðλk þ λÞ� − coshð2sηÞ þ oðNÞ: ð23Þ

Starting from Eq. (23), working in the thermodynamic limit
under the string hypothesis and making use of Bethe
equations, one arrives at (see Supplemental Material [37])

ρΨ0

2s;hðλÞ ¼ a2sðλÞ þ
1

2π

�
ΩΨ0

s

�
λþ iη

2

�
þ ΩΨ0

s

�
λ −

iη
2

��
;

ð24Þ

where s ¼ 1
2
; 1; 3

2
;…, The right-hand side of Eq. (24) is

determined by the expectation values of the quasilocal
charges on the initial state,

ΩΨ0
s ðλÞ ¼ lim

th

hΨ0jX̂sðλÞjΨ0i
N

: ð25Þ

This is a generalization of Eq. (10) to arbitrary spin. Note
the remarkable fact that this correspondence is valid for a
generic initial state jΨ0i. As a consequence, the family of
quasilocal charges fX̂sg∞s¼1=2 completely determines the

postquench stationary state through the GGE and gives the
latter’s predictions identical to those coming from the QA.
Néel quench.—An explicit example of our construction

is provided by the quench from the Néel state

jΨ0i ¼
1ffiffiffi
2

p ðj↑↓↑↓ � � �i þ j↓↑↓↑ � � �iÞ: ð26Þ
Here the root distributions characterizing the stationary
state have been previously determined by a QA calculation
[21,32]. In order to demonstrate that our GGE recovers
these known results we need to compute the generating
functions, Eq. (25). Here we can repeat the logical steps
from the calculation for s ¼ 1=2 in [18,20] by studying the
spectrum of associated auxiliary transfer matrices. This
calculation can be found in the Supplemental Material [37].
Substituting the results obtained in this way into Eq. (24)
gives perfect agreement with the known QA results.
Towards a truncated GGE.—In [10] it was argued that for

the purpose of describing finite subsystems in the thermo-
dynamic limit ultralocal GGEs can be truncated by retaining
only a finite number of the “most local” conserved charges.
An obvious question iswhether a similar logic can be applied
to our quasilocal GGE. As a first step towards understanding
this issue, we have calculated the next-nearest spin correla-
tion function in the steady state after a Néel-to-XXZ quench
for several GGEs truncated in the s direction. In Fig. 1 we
show the results of these calculations for Δ≳ 1. The data
clearly show that adding subsequent families of quasilocal
charges results in a rapid convergence of the corresponding
truncated GGE result to the exact value.
Conclusions.—We have shown how to construct an exact

GGE describing the stationary state after generic quantum
quenches to the spin-1=2Heisenberg XXZ chain. Our GGE
is built from an extended set of local and quasilocal
charges. We have shown that our construction resolves

FIG. 1 (color online). Comparison of methods: QA method
versus improved GGE predictions. Colored lines pertain to the
refined GGE calculation with the systematic addition of higher-
spin families of quasilocal charges fHðnÞ

s g for the local correlation
function hσz1σz3i in the regime Δ≳ 1 (left panel). Labels in GGEs̄

indicate the maximal auxiliary spin s̄ for the charges fHðnÞ
s g being

included in the GGE computation. The right panel displays the
relative differences δhσz

1
σz
3
i ¼ ðhσz1σz3iQA − hσz1σz3iGGEs̄

Þ=hσz1σz3iQA
in logarithmic scale. We used the mapping between correlation
functions and the set of densities ρ given in [51].
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previously observed discrepancies between predictions for
steady-state expectation values by an exact QA treatment
on the one hand, and a GGE restricted to ultralocal charges
obtained from the transfer matrix of the spin-1=2 chain on
the other hand. Our results provide unambiguous proof that
the recently discovered quasilocal charges have a non-
negligible impact on the relaxation processes of strongly
interacting many-body quantum systems in one dimension.
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