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We consider a theoretical problem of electron-electron scattering time in a quasi-one-dimensional (Q1D)
conductor in a magnetic field, perpendicular to its conducting axis. We show that inverse electron-electron
scattering time becomes of the order of characteristic electron energy, 1=τ ∼ ϵ ∼ T, in a high magnetic field,
directed far from the main crystallographic axes, which indicates breakdown of the Fermi-liquid theory. In
a magnetic field, directed close to one of the main crystallographic axis, inverse electron-electron scattering
time becomes much smaller than characteristic electron energy and, thus, applicability of Fermi-liquid
theory restores. We suggest that there exist crossovers (or phase transitions) between Fermi-liquid and
some non-Fermi-liquid states in a strong enough tilted magnetic field. Application of our results to the Q1D
conductor ðPerÞ2AuðmntÞ2 shows that it has to be possible to observe the above-mentioned phenomenon in
feasibly high magnetic fields of the order of H ≥ H� ≃ 25 T.
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High magnetic field properties of quasi-one-dimensional
(Q1D) and quasi-two-dimensional (Q2D) conductors have
been intensively studied since the discovery of the so-called
field-induced spin-density-wave cascades of phase transi-
tions in the Q1D materials ðTMTSFÞ2X (X ¼ ClO4, PF6,
etc.) [1–3]. It is important that successful theoretical
explanations of the field-induced spin-density-wave phases
[3–8] were not done in the framework of the traditional
theory of metals but required a novel notion—the so-called
quasiclassical 3D → 2D dimensional crossover. Later,
different types of quasiclassical 3D → 1D → 2D dimen-
sional crossovers were applied for explanations of such
unusual properties of a metallic phase in Q1D conductors
as Lebed’s magic angles and the Lee-Naughton-Lebed
oscillations [9]. Note that a general feature of the above-
mentioned dimensional crossovers is that the electron
spectrum changes its dimensionality in moderate magnetic
fields, where the typical “sizes” of electron trajectories
are bigger than the interplane distances in layered Q1D
conductors. Meanwhile, it was also theoretically shown
[10–13] that magnetic properties of Q1D and Q2D super-
conductors can become unique in very strong magnetic
fields under conditions of the so-called quantum 3D → 2D
dimensional crossovers, where the typical sizes of electron
trajectories are of the order or less than the interplane
distances.
The goal of our Letter is to introduce quantum 3D →

1D → 2D dimensional crossover in a Q1D conductor and
to show that it can be responsible for the Fermi-liquid–non-
Fermi-liquid crossovers (or phase transitions) in a tilted
magnetic field. We calculate inverse electron-electron
scattering time and demonstrate that it becomes almost
1D (i.e., of the order of the characteristic electron energy,
1=τ ∼ ϵ ∼ T) in high magnetic fields, directed far from the

main crystallographic axes. In this case, Landau quasipar-
ticles in Fermi liquid are not well defined. Therefore, we
can expect that Fermi-liquid theory is broken and some
novel electronic states, including the possible Luttinger-
liquid phase, appear. If magnetic field is directed close to
one of the main crystallographic axes, then, as we show
below, inverse electron-electron scattering time becomes
2D and, thus, much less than the characteristic electron
energy, 1=τ ≪ ϵ ∼ T. In this case, we have to expect Fermi-
liquid behavior of conducting electrons. It is important
that in ðPerÞ2AuðmntÞ2 layered Q1D conductor the
above-mentioned Fermi-liquid–non-Fermi-liquid cross-
overs (or transitions) are expected to happen in feasibly
high magnetic fields of the order of 25 T. We also discuss
experimental results on investigation of Lebed’s magic
angles in ðPerÞ2AuðmntÞ2 [14], where such crossovers (or
transitions) may have been already observed at H ≃ 30 T.
Let us first demonstrate the suggested phenomenon,

using qualitative language. We consider a layered Q1D
conductor with electron spectrum, corresponding to the
following two slightly corrugated planes near px ¼ �pF:

ϵðpÞ ¼ �vFðpx ∓ pFÞ − 2ty cosðpyayÞ − 2tz cosðpzazÞ;
ð1Þ

where pF and vF are the Fermi momentum and Fermi
velocity, respectively; pFvF ≫ ty ≫ tz; ℏ≡ 1. Below, we
study the case where the magnetic field is perpendicular to
the conducting chains and makes angle α with the con-
ducting planes:

H ¼ ð0; cos α; sin αÞH; A ¼ ð0;− sin α; cos αÞHx:

ð2Þ
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To consider a quantum problem of the Q1D electron (1)
motion in the magnetic field (2), we make use of the
so-called Peierls substitution method, formulated for a Q1D
conductor in Ref. [4]. In our particular case, this method
allows us to introduce magnetic field by the following
substitutions:

px ∓ pF →∓ iðd=dxÞ;
pyay → pyay − ωyðαÞ=vF;
pzaz → pzaz þ ωzðαÞ=vF; ð3Þ

where

ωyðαÞ ¼ evFayH sin α=c; ωzðαÞ ¼ evFazH cos α=c:

ð4Þ
After these substitutions the electron energy (1) becomes
the Hamiltonian operator and the corresponding
Schrödinger-like equation for electron wave function in
mixed ðx;py; pzÞ representation can be written as�
∓ ivF

d
dx

− 2ty cos

�
pyay −

ωyðαÞ
vF

x

�
− 2tz cos

�
pzaz

þ ωzðαÞ
vF

x

��
ψ�
ϵ ðx;py; pzÞ ¼ δϵψ�

ϵ ðx;py; pzÞ; ð5Þ

where electron energy is counted from the Fermi level,
δϵ ¼ ϵ − pFvF. Note that Eq. (5) can be analytically
solved. As a result, we obtain

ψ�
ϵ ðx;py; pzÞ ¼ exp

��iδϵx
vF

�
exp

�
∓ ilyðαÞ sin

�
pyay

−
ωyðαÞ
vF

x

��
exp

�
�ilzðαÞ sin

�
pzaz þ

ωzðαÞ
vF

x

��
; ð6Þ

where

lyðαÞ ¼
2ty

ωyðαÞ
; lzðαÞ ¼

2tz
ωzðαÞ

: ð7Þ

It is possible to show [3] that the parameters (7) are the
sizes of quasiclassical electron trajectories along y and
z axes, measured in terms of the corresponding lattice
parameters ay and az.
For further qualitative analysis it is convenient to

calculate the Fourier transformations of function (6) for
integer values of variables y ¼ nay and z ¼ maz (i.e., on
the conducting chains):

ψ�
ϵ ðx; y ¼ nay; z ¼ mazÞ ¼

Z
2π

0

dðpyayÞ
2π

expðinpyayÞ

×
Z

2π

0

dðpzazÞ
2π

expðimpzazÞψ�
ϵ ðx; py; pzÞ: ð8Þ

After substitution of wave function (6) in Eq. (8) and
straightforward calculations, it is possible to show that

ψ�
ϵ ðx; y ¼ nay; z ¼ mazÞ

¼ exp

��i½δϵ� nωyðαÞ ∓ mωzðαÞ�x
vF

�
× Jn½�lyðαÞ�Jm½∓ lzðαÞ�; ð9Þ

where we make use of the following property of the Bessel
functions [15]:

JnðzÞ ¼
Z

π

−π

dϕ
2π

expðinϕÞ exp½−iz sinðϕÞ�: ð10Þ

We note that the wave function in a real space (9) shows the
amplitudes for an electron to occupy the conducting chains
with the coordinates y ¼ nay and z ¼ maz in a Q1D
conductor in case, where the electron wave function is
centered at y ¼ z ¼ 0. In particular, from Eq. (9), it follows
that the total probability to occupy all possible chains at
arbitrary magnetic field is

P ¼
Xþ∞

n¼−∞

Xþ∞

m¼−∞
J2n½�lyðαÞ�J2m½∓ lzðαÞ� ¼ 1; ð11Þ

as it has to be, where we use
Pþ∞

n¼−∞ J2nðzÞ ¼ 1 for arbitrary
value of the argument z [15].
Note that wave functions in a real space (9) are one

dimensional but, in general, occupy many conducting
chains. Nevertheless, when the parameters (7) become
smaller than 1 in high magnetic fields,

H ≥ H� ¼ max

�
2tyc

evFay sin α
;

2tzc
evFaz cos α

�
; ð12Þ

electron wave functions (9) become localized on the
conducting chain with y ¼ z ¼ 0. This fact is directly seen
from the following properties of the Bessel functions [15]:

lim
z→0

J0ðzÞ → 1; lim
z→0

JnðzÞ → 0; n ≠ 0: ð13Þ

The above-mentioned localization of electrons means that
high enough magnetic fields fully “one dimensionalize” the
Q1D electron spectrum (1). Therefore, we expect that, at
high magnetic fields, Q1D electrons start to exhibit non-
Fermi-liquid properties, since Fermi-liquid is known not to
exist in a pure 1D case. It is important that this can happen
only in the case where the direction of a magnetic field is
far from the crystallographic axes at α ¼ 0° and α ¼ 90°.
Indeed, if the direction of a magnetic field is close to one of
these axes, the sizes (7) of the electron wave function (9)
become large and, thus, Fermi-liquid properties have to be
restored. Therefore, we expect Fermi-liquid–non-Fermi-
liquid angular crossovers (or phase transitions) in a tilted
high enough magnetic field. Let us estimate the value of
the critical magnetic field (12) for the Q1D conductor
ðPerÞ2AuðmntÞ2 using the following values for the param-
eters of its electron spectrum [14]: vF ¼ 1.7 × 107 cm=s,
ty ¼ 20 K, tz ≤ ty, ay ¼ 16.6 Å, and az ¼ 30 Å. In this
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case, from Eq. (12), we estimate that H� ≃ 25 T at
α ¼ 45°—the value that is available as a steady magnetic
field.
Below, we calculate inverse electron-electron scattering

time and directly demonstrate that the major Landau
criterion [16,17] for Fermi-liquid behavior is broken at
high enough magnetic fields (12). We recall that this
criterion says that Landau quasiparticles have to be well
defined in Fermi-liquid. In particular, this means that the
electron-electron scattering time has to be much less than
the typical electron energy, 1=τ ≪ ϵ ∼ T. For further
calculations, it is important that, in a magnetic field (2),

only electron momenta, perpendicular to the conducting
chains, py and pz, are conserved. This means that the
momentum conservation law can be written in the collision
integral for Fermi particles [16,17] only for the above-
mentioned directions. On the other hand, the total electron
energy is conserved in a magnetic field. In order to
calculate inverse electron-electron scattering time, averaged
over electron energy ϵ, and perpendicular components of
momentum py and pz, we need to consider the following
expression, extended electron-electron collision integral
to the case of nonconservation of momentum along
conducting axis x:

1

τ
¼

Z
dϵ1

Z
dϵ2

Z
dϵ3

Z
dϵ4δðϵ1 þ ϵ2 − ϵ3 − ϵ4Þ × nðϵ1Þnðϵ2Þ½1 − nðϵ3Þ�½1 − nðϵ4Þ�

×
Z

dp1
y

Z
dp2

y

Z
dqy

Z
dp1

z

Z
dp2

z

Z
dqzWðϵ1; p1

y; p1
z ; ϵ2; p2

y; p2
z ;

ϵ3; p1
y þ qy; p1

z þ qz; ϵ4; p2
y − qy; p2

z − qzÞ: ð14Þ

To find the electron-electron scattering probability, Wð� � �Þ in Eq. (14), in a magnetic field (2), we make use of known
electron wave functions (6). It is possible to show that the scattering probability, corresponding to the electron-electron
scattering amplitude, shown in Fig. 1, is

Wðϵ1; p1
y; p1

z ; ϵ2; p2
y; p2

z ; ϵ3; p1
y þ qy; p1

z þ qz; ϵ4; p2
y − qy; p2

z − qzÞ

¼ U
Z

dx exp½iðϵ1 − ϵ2 þ ϵ3 − ϵ4Þx=vF� × exp
�
8ilyðαÞ sin

�
ωyðαÞx
2vF

�
sin

�
p1
y þ p2

y

2

�
cos

�
p1
y − p2

y

2

�
sin

�
qy
2

��

× exp

�
8ilzðαÞ sin

�
ωzðαÞx
2vF

�
sin

�
p1
z þ p2

z

2

�
cos

�
p1
z − p2

z

2

�
sin

�
qz
2

��
: ð15Þ

We point out that we use approximation, where the
electron-electron interaction U is independent of electron
momenta in the absence of a magnetic field, which
corresponds to the electron-electron interaction term pro-
portional to δ3ðr1 − r2Þ in a real space. In this case, all

possible amplitudes of electron-electron scattering give the
same probability (15).
After lengthy but straightforward calculations, from

Eq. (15) we obtain

1

τ
¼ 2g2T

Z
∞

0

�
2πTdx
vF

�"ð2πTxvF
Þ coshð2πTxvF

Þ − sinhð2πTxvF
Þ

sinh3ð2πTxvF
Þ

#

×

�
J20

�
4lyðαÞ sin

�
ωyðαÞx
2vF

�
cosðϕ1Þ

�	
ϕ1

×

�
J20

�
4lzðαÞ sin

�
ωzðαÞx
2vF

�
cosðϕ2Þ

�	
ϕ2

; ð16Þ

where h� � �iϕ denotes averaging over variable ϕ and g
stands for the dimensionless electron-electron interaction
constant. Note that the inverse electron-electron scattering
time (16) is normalized in such a way that 1=τ ¼ g2T in a
pure 1D case. We point out that in the derivation of
Eq. (16) we make use of Eq. (10) as well as the following
Equations [15]:

FIG. 1 (color online). One possible amplitude of electron-
electron scattering, where the first electron is scattered from the
right sheet of the Q1D Fermi surface (1) to the left sheet, whereas
the second electron is scattered from the left sheet to the
right sheet.
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Z Z Z Z
dϵ1dϵ2dϵ3dϵ4 exp½iðϵ1 − ϵ2 þ ϵ3 − ϵ4Þx=vF�

× δðϵ1 þ ϵ2 − ϵ3 − ϵ4Þnðϵ1Þnðϵ2Þ½1 − nðϵ3Þ�½1 − nðϵ4Þ�

¼ 2π2T3

"ð2πTxvF
Þ coshð2πTxvx

Þ − sinhð2πTxvF
Þ

sinh3ð2πTxvF
Þ

#
ð17Þ

and Z
2π

0

dϕ
2π

J0ð2z sinϕÞ ¼ J20ðzÞ: ð18Þ

Let us analyze Eq. (16) at high magnetic fields. First, we
consider the case where the magnetic field is directed far
from the crystallographic axes at α ¼ 0° and α ¼ 90°. If the
magnetic field satisfies Eq. (12), as it directly follows from
Eq. (16), both Bessel functions are of the order of 1 and the
inverse electron-electron scattering time is of the order of

1

τ
∼ g2T ∼ T: ð19Þ

In other words, at high magnetic fields (12), inverse
electron-electron scattering time is completely one dimen-
sionalized (i.e., becomes of the order of the characteristic
electron energy, 1=τ ∼ ϵ ∼ T). According to Landau
[16,17], in this case the notion of quasiparticles in Fermi
liquid loses its meaning. Therefore, under these conditions,
we expect non-Fermi-liquid behavior of the Q1D electron
gas (1). Now, let us consider inverse electron-electron
scattering time (16) in the case where the magnetic field is
applied along the y axis, which corresponds to α ¼ 0°.
In this case, the integral (16) can be estimated as

1

τ
ð00Þ ¼ 2g2T

Z
∞

0

�
2πTdx
vF

�"2πTx
vF

coshð2πTxvF
Þ − sinhð2πTxvF

Þ
sinh3ð2πTxvF

Þ

#

× lim
α→0

�
J20

�
4lyðαÞ sin

�
ωyðαÞx
2vF

�
cosðϕ1Þ

�	
ϕ1

:

ð20Þ

Let us consider the case of low enough temperatures, where

T ≪ ty ≃ ωyðα ¼ 90°Þ: ð21Þ

In this case, for small enough angles,

sin α ≪ T=ωyðα ¼ 90°Þ; ð22Þ

the integral (20) can be simplified as

1

τ
ð0°Þ ¼ 2g2T

Z
∞

0

dz
z coshðzÞ − sinhðzÞ

sinh3ðzÞ

×

�
J20

�
2tyz

πT
cosϕ

�	
ϕ

: ð23Þ

Note that the integral (23) can be analytically calculated
with the so-called logarithmic accuracy:

1

τ
ð0°Þ≃ g2T2

2πty
ln2

�
ty
T

�
≪ T: ð24Þ

As it follows from Eq. (24), for small enough angles (22)
the inverse electron-electron scattering time becomes
smaller than the electron characteristic energy,
1=τ ≪ ϵ ∼ T, and the concept of quasiparticles in Fermi
liquid restores [16,17]. Therefore, we expect restoration of
Fermi-liquid behavior for α≃ 0°. In Fig. 2, the results of
careful numerical calculations of Eq. (16) are presented,
which confirm the above-mentioned analytical analysis.
To obtain inverse electron-electron relaxation time for a
magnetic field, directed close to the z axis (α ¼ 90°), we
need to make the following substitutions ty → tz and
ωyðαÞ → ωzðαÞ in Eqs. (22) and (24). As a result, we obtain

1

τ
ð90°Þ≃ g2T2

2πtz
ln2

�
tz
T

�
≪ T ð25Þ

for

cos α ≪ T=ωzðα ¼ 0°Þ; ð26Þ

and, thus, Fermi-liquid behavior is expected to restore also
at angles close to 90°. (We note that there are some
mathematical similarities between the microscopic problem
considered in this Letter and semiphenomenological cal-
culations of conductivity of a Q1Dmetal in a magnetic field
[18]. Nevertheless, the physical conclusions of our Letter
and Ref. [18] are quite different.)
In conclusion, we discuss possible experimental appli-

cations of the suggested above Fermi-liquid–non-Fermi-
liquid angular crossovers (or phase transitions) in a Q1D

FIG. 2 (color online). Inverse electron-electron scattering time,
calculated by means of Eq. (16) and expressed in term of g2T, is
shown as a function of angle α. The calculations are done for the
parameters lyð0Þ ¼ 1, tz=ty ¼ 0.2, ay ¼ az=2, 4πT=ωyð0Þ ¼ 0.2,
which correspond to H ≃ 25 T.
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conductor in high magnetic fields. The most natural way
is to perform the corresponding experiments in the Q1D
conductor ðPerÞ2AuðmntÞ2 under pressure, where the
charge-density-wave state is destroyed and the metallic
Fermi-liquid phase is a ground state at H ¼ 0 [14,19]. In
addition to resistive experiments [14,19], we also suggest
torque measurements in high magnetic fields, H ≃ 25 T,
perpendicular to the conducting chains, since the angular
Fermi-liquid–non-Fermi-liquid crossovers have to also
have a thermodynamic consequence [20]. In this context,
we note that, as shown by Yakovenko [21], Lebed’s magic
angle effects have to exist already in moderate magnetic
fields in the Fermi-liquid phase of a Q1D conductor for
different thermodynamic properties such as torque, specific
heat, and magnetic moment. As to the resistive measure-
ments of Lebed’s magic angle phenomenon [14], it seems
that one feature of the above-mentioned crossovers has
already been observed in Ref. [14]—nonmetallic temper-
ature dependence of resistance for high magnetic fields,
directed far from the main crystallographic axes. It is
important that this nonmetallic behavior cannot be a
consequence of Fermi-liquid magnetoresistance, since,
for experimental current along the conducting axis, I∥b,
Fermi-liquid magnetoresistance is expected to be zero. On
the other hand, it is known that it is not easy to measure
conductivity in a Q1D conductor exactly along its con-
ducting axis [3]; therefore, more experimental works are
needed.
We stress that the effects suggested in the Letter are

rather general and have to be observed in other materials
containing Q1D parts of the Fermi surfaces, such as
ðTMTSFÞ2X salts and some BEDT-based materials.
Nevertheless, the required magnetic field for Fermi-
liquid–non-Fermi-liquid crossovers in the above-
mentioned conductors is estimated as H� ≃ 250 T, which
is an order of magnitude higher than the value for the Q1D
ðPerÞ2AuðmntÞ2 conductor.
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