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The recent discovery of topological Kondo insulators has triggered renewed interest in the well-known
Kondo insulator samarium hexaboride, which is hypothesized to belong to this family. In this Letter, we
study the spin texture of the topologically protected surface states in such a topological Kondo insulator. In
particular, we derive close relationships between (i) the form of the hybridization matrix at certain high-
symmetry points, (ii) the mirror Chern numbers of the system, and (iii) the observable spin texture of the
topological surface states. In this way, a robust classification of topological Kondo insulators and their
surface-state spin texture is achieved. We underpin our findings with numerical calculations of several
simplified and realistic models for systems like samarium hexaboride.
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Introduction.—Since the theoretical characterization of
topological Kondo insulators (TKIs) [1,2], this class of
materials has attracted much attention in the community.
Onematerial in particular, samariumhexaboride (SmB6), has
been studied extensively both theoretically and experimen-
tally. Several theoretical studies predicted SmB6 [3–8] and
related compounds [9,10] to be TKIs with protected gapless
surface modes. Different experiments showed that, at suffi-
ciently small temperatures, transport is indeed dominated by
the surface contributions [11–13]. At the same time, angle-
resolved-photoemission-spectroscopy (ARPES) [14–19],
quantum-oscillation [20], and scanning-tunneling-micros-
copy measurements [21] confirmed the existence of gapless
surface states. Nevertheless, due to the small bulk gap of
15–20 meV [22–24] and strong electronic correlations, a
detailed characterization of the nature of the surface states is
difficult and may require additional concepts such as atomic
reconstruction [25], Kondo breakdown [26], or excitonic
scattering [27]. Some groups also challenged the scenario of
a TKI [24,28]. To date, the most conclusive evidence for
the topological nature of the surface states is provided by
spin-resolved ARPES measurements of the (001) surface
[23] showing that the surface states around the X̄ point of the
surface Brillouin zone (SBZ) are spin-polarized.
SmB6 is predicted to have a band inversion at the X high-

symmetry points (HSPs) [3–6]. The X-inverted phase has a
nontrivial strong Z2 index ν0 ¼ 1, weak topological indices
ν ¼ ð1; 1; 1Þ, and protected surface Dirac cones as shown in
Fig. 1(a) for the (001) surface. The experimental work in
Ref. [23] is consistent with these predictions and furthermore
suggests that the spin texture of the surface states is as
sketched in Fig. 1(c). Interestingly, however, several theo-
retical studies reached conflicting conclusions about the
nature of the spin texture [29–31], which is not uniquely
determined by the Z2 invariants. In fact, for linear Dirac
cones, two situations are compatible with the cubic sym-
metry, see Figs. 1(c) and 1(d). They are distinguished by
opposite winding numbers wX̄ ¼ �1 of the planar unit spin

ðnx; nyÞ ¼ ðSx; SyÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
around the X̄ point, where

the winding number around the HSP K [32] is defined as

wK ¼ 1

2π

I
γK

∇½Im logðnx þ inyÞ� · ds; ð1Þ

with γK a contour encircling K in an anticlockwise fashion.
This discrepancy between different theoretical models and
approaches raises the important question of what determines
the spin texture in cubic TKIs.

(a) (b)

(c) (d)

FIG. 1 (color online). (a) Sketch of the Dirac cones in the (001)
surface Brillouin zone. (b) Positive directions of mirror invariant
lines in the SBZ for the (001) surface with outward pointing
normal vector nsf ¼ ez, see Ref. [33] for further details. (c),(d)
Sketch of the spin (or pseudospin, see Sec. II) textures in the
(001) SBZ. While at Γ̄ the winding number is always wΓ̄ ¼ 1, at
the X̄ points it can be wX̄ ¼ þ1 (c) or wX̄ ¼ −1 (d), depending on
the configuration of the MCNs.
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In this Letter, we provide two answers to this question:
First, we show that there is a close connection between the
spin texture and the mirror Chern numbers (MCNs) [34]. In
particular, knowledge of the MCNs allows us to distinguish
between the two situations shown in Figs. 1(c) and 1(d).
Second, we provide analytical expressions relating the
surface-state spin texture to the hybridization parameters
of specific models. These relations demonstrate that the
number and type of included orbitals in the effective model
does not uniquely define the winding number; instead, the
relative strength of different-range hybridization parame-
ters is equally important. In addition, we show how the
system can be tuned across topological phase transitions,
during which the surface-state spin texture changes while
all the Z2 invariants remain unaffected.
In the remainder of the Letter, we will provide the details

to the above statements. We will also apply the general
argumentation to a multiorbital model with itinerant Eg and
localized Γ8 electrons, as in Ref. [31]. Other models are
discussed in the Supplemental Material [33].
Mirror Chern numbers define pseudospin texture.—To

start, we review certain facts about the MCNs in SmB6.
The MCNs are topological invariants, which are protected
by mirror symmetries [8,34,35]. In a cubic system, there

are three distinct MCNs: C0≡CðþiÞ
kα¼0, Cπ≡CðþiÞ

kα¼π, and

Cd ≡ CðþiÞ
kα¼kβ

, with α; β ∈ fx; y; zg and β ≠ α, where

CðþiÞ
S refers to the Chern number of the Bloch states on

the mirror-invariant plane S with eigenvalue þi under the
mirror operation, see also Ref. [35]. As was shown in
Ref. [8], the cubic symmetry implies that the MCNs in the
X-inverted phase are C0 ¼ 2 mod 4, Cπ ¼ 1 mod 4, and
Cd ¼ 1 mod 2. These values imply two additional Dirac
nodes along the Γ̄X̄ line on the (110) surface [8,35]. In the
following, we show that the MCNs also determine the
spin texture on the (001) surface. (A related argument for
Hg-based topological insulators was presented in Ref. [36].)
The projections of the mirror planes onto the (001)

surface correspond to the high-symmetry lines (HSLs)
shown in Fig. 1(b). Along these mirror invariant lines
(MILs), we can classify the surface states according to their
mirror eigenvalues �i. The bulk-edge correspondence for
each mirror-invariant plane then states that the MCN C is
equal to the number of right-moving (C > 0) or left-moving
(C < 0) surface modes with mirror eigenvalue þi, see
Fig. 2. There exists a certain freedom to choose signs in
the calculation of the MCNs. We use a convention [33],
which leads to the positive directions shown in Fig. 1(b).
The mirror eigenvalues also define a pseudospin of the

surface states μ in the following way: On the ky ¼ 0 or
ky ¼ πMIL, we choose a basis fu1; u2g in which the mirror
operator takes the formMy ¼ −iμy, where μα is theαth Pauli
matrix. Furthermore, on the kx ¼ 0 and kx ¼ πMILswe can
choose the mirror operator Mx ¼ −iμx. The pseudospin
is then given by the spinor u ¼ au1 þ bu2 ≡ ða; bÞt. Its
relation to the physical spin of the electron is detailed in

Sec. V. It follows that, along theMILs, the pseudospin lies in
the surface plane and is always perpendicular to the MIL. In
order to make the connection to the pseudospin texture, it is
useful to consider the effective Hamiltonian close to the
Dirac node at the HSP K ¼ Γ̄ or K ¼ X̄:

HKðqÞ ¼ vxKμyqx − vyKμxqy ¼ iðvxKMyqx − vyKMxqyÞ: ð2Þ
Here, we measure the momentum relative to the respective
HSP, q ¼ k − K. At the Γ̄ point, the cubic symmetry implies
that vxΓ̄ ¼ vyΓ̄ and the resulting pseudospin texture neces-
sarily has a winding number wΓ̄ ¼ 1. But at the X̄ points,
vxX̄ ≠ vyX̄ in general, and the winding number of the pseu-
dospin texture is wX̄ ¼ sgnðvxX̄vyX̄Þ. Because the MCNs fix
the direction of the pseudospin at the points where the Fermi
lines cross the MILs, the MCNs also fix the relative sign
between vxX̄ and vyX̄ and hence the winding number wX̄. It is
then easy to see that the set ðC0; CπÞ ¼ ð2; 1Þ implies the
pseudospin texture shown in Fig. 1(c), while ðC0; CπÞ ¼
ð−2; 1Þ implies the pseudospin texture shown in Fig. 1(d).
For linear Dirac cones at Γ̄ and X̄, there are no other
possibilities; i.e., higher MCNs imply additional Dirac
nodes along HSLs [33]. (Note that in Fig. 1 we assume a
chemical potential above the Dirac nodes.)
Hybridization matrix defines mirror Chern numbers.—

We now analyze the connection between microscopic
parameters of the electronic Hamiltonian and the set of
MCNs. From ab initio calculations [5,29,31,37] it is known
that the states near the Fermi energy in SmB6 are
predominantly formed by the Sm 5d electrons of Eg

symmetry and the Sm 4f electrons in the J ¼ 5=2

multiplet. The latter splits further into a Γ8 quartet, jΓð1Þ
8;�i ¼ffiffi

5
6

q
j � 5

2
i þ

ffiffi
1
6

q
j ∓ 3

2
i and jΓð2Þ

8;�i ¼ j � 1
2
i, and a Γ7 dou-

blet, jΓ7;�i ¼
ffiffi
1
6

q
j � 5

2
i −

ffiffi
5
6

q
j ∓ 3

2
i, where the index � is

the orbital pseudospin [38]. Our strategy is to start in the
trivial insulating phase without band inversion and consider
the effective model, which describes the gap closing and
subsequent band inversion at the X points.
The little co-group at the X point is isomorphic to the

tetragonal symmetry group D4h. Thus, all the irreducible
representations are at most two dimensional and the band
inversion occurs between the energetically highest single
Kramers pair of f electrons fX;� and the energetically

(a) (b)

i

i i

i i

i i

i i i

ii

FIG. 2 (color online). Chiral surface states with mirror eigen-
values �i along the Γ̄X̄ (a) and X̄M̄ line (b) in positive direction
(see Fig. 1) for C0 ¼ −2 and Cπ ¼ 1.
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lowest single Kramers pair of d electrons dX;↑↓. Near the
transition between the trivial and the topological phase, the
low-energy electronic structure can be obtained from an
effective 4 × 4 Bloch Hamiltonian around the X points,

HX
effðqÞ ¼

�
εdq Φ†

q

Φq εfq

�
: ð3Þ

Equation (3) is given for a spinor ψ ¼
ðdX;↑; dX;↓; fX;þ; fX;−Þt and q is measured from X. The
simultaneous presence of inversion and time-reversal sym-
metry allows us to choose the hybridization matrix in the
form Φq ¼ iϕq · σ, with ϕq ¼ ϕ�

q ¼ −ϕ−q and σ the Pauli
matrices in spin space. In the following, we consider
X ¼ ð0; 0; πÞ, and expand to lowest order in q: εdq ¼ εd1,

εfq ¼ εf1 and

Φq ¼ i½ϕ1ðσxqx þ σyqyÞ þ ϕ2σzqz�: ð4Þ
As we show below, the relative sign between the two
independent parameters ϕ1 and ϕ2 of the linearized hybridi-
zation matrix [Eq. (4)] determines the set of MCNs and
hence the surface-state spin texture in the X-inverted phase.
First, we address the MCN C0 and therefore consider the

mirror plane kx ¼ 0. The mirror operator in the basis of
Eq. (3) is Mx ¼ −iτz ⊗ σx. Thus, in the subspace
Mx ¼ þi, Eq. (3) reduces to

HðþiÞ
eff;kx¼0ðqÞ ¼ ε̄1 − ϕ1qyμx þ ϕ2qzμy − Δμz; ð5Þ

where μα are the Pauli matrices acting on the basis vectors
ð1;−1; 0; 0Þ= ffiffiffi

2
p

and ð0; 0; 1; 1Þ= ffiffiffi
2

p
and we have defined

ε̄≡ 1
2
ðεd þ εfÞ and Δ≡ 1

2
ðεf − εdÞ. The total Berry flux

contribution of the lower band of a Dirac model hðkÞ ¼
ϵðkÞd̂ðkÞ · μ with d̂ ¼ d=jdj is

CDirac ¼ 1

4π

Z
dk1dk2d̂ðkÞ ·

� ∂d̂
∂k1 ×

∂d̂
∂k2
�
; ð6Þ

which for our case with dðkÞ ¼ ð−ϕ1k1;ϕ2k2;−ΔÞ leads to

CDirac
kx¼0 ¼

1

2
sgnðΔϕ1ϕ2Þ: ð7Þ

Therefore, starting from the trivial phase with Δ < 0 and
creating a band inversion at X (Δ > 0) leads to a MCN of
C0 ¼ 2sgnðϕ1ϕ2Þ, where the factor 2 comes from the fact
that there are two X points in the kx ¼ 0 plane.
The two other MCNs can be calculated analogously,

see Ref. [33] for details. We obtain Cπ ¼ 1 and
Cd ¼ νsgnðϕ1ϕ2Þ, where ν ¼ −1 for a band inversion

between ðx2 − y2Þ and a linear superposition of Γð1Þ
8 and

Γ7, and ν ¼ 1 for a band inversion between ð3z2 − r2Þ and
Γð2Þ
8 . Hence, if sgnðϕ1ϕ2Þ ¼ 1 (−1), we recover the set of

MCNs which imply the pseudospin texture in Fig. 1(c)
[Fig. 1(d)]. In general, we obtain

wX̄ ¼ sgnðϕ1ϕ2Þ: ð8Þ
Model calculations for SmB6.—In the following, we will

illustrate our theoretical findings by calculations with an
effective lattice model for SmB6. In the interest of sim-
plicity, we will restrict ourselves to the Γ8 quartet for f
electrons and study a model similar to that used in
Refs. [3,31]. Analogous calculations can be performed
for the full or the Γ7 model [33]. The Bloch Hamiltonian is
an 8 × 8 matrix

HðΓ8Þ ¼
�
hd Φ8

†

Φ8 h8

�
; ð9aÞ

where the hopping of d and f electrons and the hybridi-
zation are given by

hdðkÞ ¼ σ0

�− 3
2
ðc1 þ c2Þðtð1Þd þ 2tð2Þd c3Þ

ffiffi
3

p
2
ðc1 − c2Þðtð1Þd − 2tð2Þd c3Þffiffi

3
p
2
ðc1 − c2Þðtð1Þd − 2tð2Þd c3Þ −4tð2Þd c1c2 − 2tð1Þd c3 − 1

2
ðc1 þ c2Þðtð1Þd þ 2tð2Þd c3Þ

�
; ð9bÞ

h8ðkÞ ¼ σ0

�
ϵ8 − 3

2
ðc1 þ c2Þðtð1Þ8 þ 2tð2Þ8 c3Þ

ffiffi
3

p
2
ðc1 − c2Þðtð1Þ8 − 2tð2Þ8 c3Þffiffi

3
p
2
ðc1 − c2Þðtð1Þ8 − 2tð2Þ8 c3Þ ϵ8 − 4tð2Þ8 c1c2 − 2tð1Þ8 c3 − 1

2
ðc1 þ c2Þðtð1Þ8 þ 2tð2Þ8 c3Þ

�
; ð9cÞ

Φ8ðkÞ ¼ −i

 
3=2Vð1Þ

8 ðs1σ1 þ s2σ2Þ þ 3Vð2Þ
8 ½ðc1 þ c2Þs3σ3 þ c3ðs1σ1 þ s2σ2Þ�…

−
ffiffiffi
3

p
=2Vð1Þ

8 ðs1σ1 − s2σ2Þ þ
ffiffiffi
3

p
Vð2Þ
8 ½ðc1 − c2Þs3σ3 þ c3ðs1σ1 − s2σ2Þ�…

−
ffiffiffi
3

p
=2Vð1Þ

8 ðs1σ1 − s2σ2Þ þ
ffiffiffi
3

p
Vð2Þ
8 ½ðc1 − c2Þs3σ3 þ c3ðs1σ1 − s2σ2Þ�

Vð1Þ
8 ½2s3σ3 þ 1=2ðs1σ1 þ s2σ2Þ� þ Vð2Þ

8 ½ðc1 þ c2Þs3σ3 þ 4ðc2s1σ1 þ c1s2σ2Þ þ c3ðs1σ1 þ s2σ2Þ�

!
; ð9dÞ

with the Pauli matrices σα acting in spin space and the spinor
ψ ¼ ðdx2−y2;↑↓; d3z2−r2;↑↓; fΓð1Þ

8
;�; fΓð2Þ

8
;�Þt. Here, cα ≡ cos kα

and sα ≡ sin kα, and we use tð1;2Þ (Vð1;2Þ) to denote first and
second neighbor hopping (hybridization) parameters, respec-
tively. The hopping and hybridization parameters should be
considered as renormalized due to a strong local Coulomb

interaction for the f electrons [39–41]. As long as the electronic
states near theFermi energy arewell describedbyquasiparticles,
the adopted single-particle approach to compute the topological
invariants is justified, even in the presence of strong electron
correlations [42–44]. A typical band structure in the X-inverted
phase (without hybridization) is shown in Fig. 3(a).
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For kx ¼ �ky, the off-diagonal elements of both hd and
h8 vanish and the d and f electrons are split into ðx2 − y2Þ
and ð3z2 − r2Þ orbitals, and Γð1Þ

8 and Γð2Þ
8 , respectively.

Therefore, at the point X ¼ ð0; 0; πÞ we obtain

hdðXÞ ¼ σ0diag½−3ðtð1Þd − 2tð2Þd Þ; tð1Þd − 2tð2Þd �; ð10Þ
and similarly for the Γ8 orbitals. Ab initio calculations [9]

suggest that tð1Þd ; tð2Þ8 > 0 and tð2Þd ; tð1Þ8 < 0, such that the

band inversion occurs between the ðx2 − y2Þ and the Γð1Þ
8

orbitals. The hybridization matrix for these two orbitals
can be expanded to first order at the X point:

−iΦq ¼
3

2
ðσxqx þ σyqyÞðVð1Þ

8 − 2Vð2Þ
8 Þ − 6Vð2Þ

8 σzqz: ð11Þ
Therefore, according to Eq. (8), we obtain

wX̄ ¼ −sgn½Vð2Þ
8 ðVð1Þ

8 − 2Vð2Þ
8 Þ�; ð12Þ

leading to the phase diagram shown in Fig. 3(b). As

discussed above, ν ¼ −1 for ðx2 − y2Þ and Γð1Þ
8 orbitals,

such that we expect ðC0; Cπ; CdÞ ¼ ð2; 1;−1Þ in phase I,
leading to a pseudospin texture with wX̄ ¼ 1, while we
expect ðC0; Cπ; CdÞ ¼ ð−2; 1; 1Þ and wX̄ ¼ −1 in phase II.

At the phase transitions Vð2Þ
8 ¼ 0, the hybridization van-

ishes along the ΓX line, for Vð2Þ
8 ¼ 1

2
Vð1Þ
8 it vanishes at

both the XM and XR lines. This causes the hybridization
gap to close and the MCNs ðC0; Cπ; CdÞ to change by
ð�4; 0;∓ 2Þ. We numerically confirmed the phase diagram
in Fig. 3(b) by directly calculating the MCNs using a
method for a discretized BZ [45]. Figures 3(c) and 3(d)

show the physical-spin texture in phases I and II, respec-
tively. They were calculated for a slab of 500 unit cells and
fit the expected texture for the pseudospin.
Relation between physical spin and pseudospin.—The

observed equivalence between physical spin and pseudospin
texture in Fig. 3 requires more attention: Because the f
electrons experience strong spin-orbit coupling, the orbital
pseudospin defined above is not equivalent to the physical
spin of the electrons and themirror and spin operators do not
commute. The relation between physical spin and orbital
pseudospin for the J ¼ 5=2 multiplet is given in Ref. [33].
According to the definition of the pseudospin above, a

surface pseudospin in positive n direction corresponds to an
eigenvalue −i ofMn. In order to find a relation between the
pseudospin and physical-spin texture of the surface states,
we therefore consider the effect of the projector Pps

n ≡
1
2
ð1þ iMnÞ on the physical-spin operator Sn, where Pps

n

projects onto the subspace Mn ¼ −i and n is the normal
vector of the mirror plane. One can show that, for the Eg

and J ¼ 5=2 multiplets,

Pps
n Sn0P

ps
n ≡ 0 for n⊥ n0; ð13Þ

which states that on a MIL, the physical spin is always
parallel (or antiparallel) to the surface-state pseudospin.
Whether the two are parallel or antiparallel is determined
by the eigenvalues of the projected spin operator,

Spsn ≡ Pps
n SnP

ps
n : ð14Þ

For the d orbitals we have S ¼ σ leading to eigenvaluesþ1 of
Spsn , while for the Γ7, the Γ8, and the full model, we obtain
the (approximate) spectra f−0.24g, f0.52; 0.14g, and
f0.71; 0.14;−0.43g, respectively, see Ref. [33]. As all eigen-
values are positive for theΓ8model, the physical spin is indeed
alwaysparallel to the surface-state pseudospin and all findings
concerning the pseudospin are directly transferable to the
physical spin. This is not the case if we also consider the Γ7

orbital, because the projected spin operator of f electrons also
has negative eigenvalues. In these cases, the relation between
pseudospin and physical spin of the surface states depends on
the orbital character of the state. In all cases we have studied,
the winding number of the physical spin sufficiently close to
theDirac node is nevertheless identical to thewinding number
of the pseudospin. However, the direction may be reversed
around some of the Dirac points. Indeed, we find that this may
occur for theΓ7 model, signaling a dominant (in terms of spin)
Γ7 character of the surface states [33].
Finally, we mention that for other models with band

crossings along some HSLs, there is the possibility of
phases with higher MCNs and a larger number of protected
surface states. We discuss an example in Ref. [33].
Conclusion.—We have derived a close relationship

between the hybridization matrix at the X high-symmetry
points, the mirror Chern numbers, and the spin texture of the
topologically protected surface states in topological Kondo
insulators. Although we have motivated our study with
SmB6, the line of argumentation also applies to other

(a) (b)

(c) (d)

FIG. 3 (color online). Band structure without hybridization (a)
and phase diagram (b) for the Γ8 model defined in Eq. (9) with

tð1Þd ¼ 1, tð2Þd ¼ −0.2, tð1Þ8 ¼ −0.03, tð2Þ8 ¼ 0.02, and ϵ8 ¼ −3.
The two spin textures [(c),(d)] in phases I and II, respectively,

are realized for the hybridization parameters ðVð1Þ
8 ; Vð2Þ

8 Þ ¼
ð0.3; 0.07Þ and ðVð1Þ

8 ; Vð2Þ
8 Þ ¼ ð−0.1; 0.1Þ, respectively.
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topological insulators. Explicit calculations for different
models for SmB6 showed that the spin texture of the surface
states does not only depend on the orbitals that are included
in the effective model, but also depends on the magnitude of
different hybridization parameters. This fact needs to be kept
inmindwhen interpreting ab initio or effective-model-based
calculations for this type ofmaterials. Finally, our results can
be used to infer mirror Chern numbers from spin-resolved
ARPES measurements and predict further observables.

Wewould like to thank T. Neupert, M. Shi, and N. Xu for
inspiring discussions. This work is financially supported by
a grant of the Swiss National Science Foundation.

Note added.—Recently, a related study [46] with compat-
ible results has appeared.
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