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According to the mean-field theory a condensed Bose-Bose mixture collapses when the interspecies
attraction becomes stronger than the geometrical average of the intraspecies repulsions, g212 > g11g22. We
show that instead of collapsing such a mixture gets into a dilute liquidlike droplet state stabilized by
quantum fluctuations thus providing a direct manifestation of beyond mean-field effects. We study various
properties of the droplet and find, in particular, that in a wide range of parameters its excitation spectrum
lies entirely above the particle emission threshold. The droplet thus automatically evaporates itself to zero
temperature, the property potentially interesting by itself and from the viewpoint of sympathetic cooling
of other systems.
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The mean-field and the first beyond mean-field contri-
bution, the famous Lee-Huang-Yang (LHY) correction, to
the ground state energy of a homogeneous weakly repulsive
Bose gas read [1]

E=V ¼ ðgn2=2Þð1þ 128
ffiffiffiffiffiffiffiffi
na3

p
=15

ffiffiffi
π

p þ � � �Þ; ð1Þ
where n is the density and a > 0 and g ¼ 4πℏ2a=m are,
respectively, the scattering length and coupling constant
characterizing the interparticle interaction. The LHY cor-
rection originates from the zero-point motion of the
Bogoliubov excitations and is thus intrinsically quantum.
It is also universal in the sense that it depends only on the
two-body scattering length and not on other parameters of
the two-body or higher-order interactions. Quite naturally
the experimental observation of this fundamental beyond
mean-field effect came from the field of ultracold gases
[2–7], where the gas parameter na3 and, therefore, the
relative contribution of the LHY term can be enhanced
by using Feshbach resonances [8]. Note however that the
effect is perturbative; for na3 ∼ 1 higher order terms and
processes, in particular, three-body decay, come into play.
A different situation is predicted for spinor gases where
quantum fluctuations lift the degeneracy in the ground-state
manifold [9,10] or lead to quantum mass acquisition [11].
In this Letter we point out that in a Bose-Bose mixture

the mean-field term and the LHY term depend on the inter-
and intraspecies coupling constants in a different manner.
Therefore, one can independently control them and make
them comparable to each other without ever leaving the
weakly interacting regime. In particular, an interesting
situation, impossible in the single-component case, arises
when the mean-field term, ∝ n2, is negative and the LHY
one, ∝ n5=2, is positive. Because of its steeper density
scaling the quantum LHY repulsion neutralizes the mean-
field attraction and stabilizes the system against collapse.
The mixture can then exist as a droplet in equilibrium
with vacuum without any external trapping [12]. This

phenomenon naturally suggests a proof-of-principle experi-
ment for observing the LHY quantum correction. The
droplet can be prepared from currently available homo- and
heteronuclear atomic mixtures by tuning the inter- and
intraspecies scattering lengths into the unstable (from the
mean-field viewpoint) region and by releasing the trap. We
argue that several properties of the droplet are very unusual
for ultracold gases and can have interesting implications.
In particular, we predict that the droplet can have a peculiar
excitation spectrum containing only a continuum part
and very few or no discrete modes (usually associated
with collective excitations: surface waves, breathing mode,
etc.) This means that starting from an ordinary finite-
temperature trapped condensed mixture one arrives at a
macroscopic zero-temperature object; excitations corre-
sponding to the continuum spectrum evaporate when the
trap is switched off. The droplet can then be adiabatically
manipulated (for instance, be trapped again) and used as a
bath for sympathetic cooling of other systems. Another
interesting property of the droplet is that its density can
be strongly increased by going deeper into the unstable
region and one can, in a controllable fashion, prepare an
unprecedentally dense ultracold gas and study its optical
properties, inelastic decay, etc.
Let us choose the path-integral representation for the

Bose-Bose mixture governed by the action S ¼R
d3rdtL½Ψ1ðr; tÞ;Ψ�

1ðr; tÞ;Ψ2ðr; tÞ;Ψ�
2ðr; tÞ� with the

Lagrangian density
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where μi is the chemical potential and niðrÞ ¼ jΨiðrÞj2
is the density of the ith component; gii ¼ 4πaii=mi and
g12 ¼ 2πa12=mr are, respectively, the intra- and interspe-
cies coupling constants, mr ¼ m1m2=ðm1 þm2Þ, and we
set ℏ ¼ 1.
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In the mean-field approximation the system is
stable when the quadratic form

P
ijgijninj is positive

definite, which requires simultaneously g11 > 0, g22 > 0,
and g212 < g11g22. The classical ground state is charac-
terized by uniform condensate densities ni satisfyingP

jgijnj ¼ μi. In the weakly interacting regime quantum
fluctuations are weak and one can expand L up to quadratic
terms in Ψ0

i and Ψ0�
i , where Ψ0

i ¼ Ψi −
ffiffiffiffi
ni

p
, thus arriving

at the Gaussian path integral. The validity condition for this
approximation is simply na3 ≪ 1 (hereinafter for qualita-
tive estimates we omit subscripts assuming that the masses
are of the same order of magnitude, m1 ∼m2 ∼m, and the
same holds for the densities, n1 ∼ n2 ∼ n, and scattering
lengths, a11 ∼ a22 ∼ ja12j ∼ a). The equations of motion
δL=δΨ0�

i ¼ 0 and δL=δΨ0
i ¼ 0 give two Bogoliubov exci-

tation branches [14,15]
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where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
giinik2=mi þ ðk2=2miÞ2

p
are the Bogoliubov

spectra for the individual components.
The LHY correction is the zero-point energy correspond-

ing to the Bogoliubov modes (3). The explicit expression
for its density reads [14]
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and can be rewritten as
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where f > 0 is dimensionless. For m2 ¼ m1 and for
trivial cases, such as ni ¼ 0 or g12 ¼ 0, the two excitation
branches (3) have the form of the usual single-
component Bogoliubov spectra and the integral in
Eq. (4) is analytic. In particular, for equal masses
fð1; x; yÞ ¼ P

�ð1þ y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − yÞ2 þ 4xy

p
Þ5=2=4 ffiffiffi

2
p

. In
any case, the main contribution to the integral in Eq. (4)
comes from momenta of order 1=ξh ¼ ffiffiffiffiffiffiffiffiffi

mgn
p

.
Let us now introduce δg ¼ g12 þ ffiffiffiffiffiffiffiffiffiffiffiffi

g11g22
p

and discuss
the unstable regime when δg is negative but small com-
pared to g11 > 0 and g22 > 0. The mechanical instability
can be understood by diagonalizing the mean-field termP

i;j¼1;2gijninj=2 ¼ P
�λ�n2�, where λ− ≈ δg

ffiffiffiffiffiffiffiffiffiffiffiffi
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p
=
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, and nþ ¼ ðn1 ffiffiffiffiffiffi

g11
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n2
ffiffiffiffiffiffi
g22

p Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ g22

p
. It is energetically favorable to

maximize n2− and minimize n2þ, i.e., increase both densities
while preserving the ratio n2=n1 ¼ const ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g11=g22
p

. The
instability also manifests itself in the fact that Ek;− becomes
complex for small momenta k ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjδgjnp

. However, for
k ∼ 1=ξh ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjδgjnp

, i.e., in the regionmostly contributing
to the LHY term, both modes Ek;− and Ek;þ are insensitive
to small variations of δg and, in particular, to its sign. Note
that the global increase in densities leads to the hardening
of these modes and to the growth of the corresponding
zero-point energy∝ n5=2, which is faster than the mean-field
energy gain∝ n2. One can thus say that the long-wavelength
instability is cured by quantum-mechanical fluctuations at
shorter wavelengths.
More formally, let us introduce a characteristicmomentum

pc such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjδgjnp

≪ pc ≪ 1=ξh. One can then obtain
an effective low-energy theory by integrating out the modes
with p > pc from the initial problem. The result is that
the effective Lagrangian density (for the low-momentum
part ofΨi) is given by Eq. (2) minus the zero-point energy of
the high-energy modes. The latter is given by Eq. (4) or (5),
where one can set g212 ¼ g11g22 neglecting small finite-δg
corrections and extending the integration interval pc < k <
∞ to 0 < k < ∞ by using the fact that the low-momentum
contribution to Eq. (4) is negligible.
As a result of the competition between the attractive

mean-field term ∝ n2 and repulsive LHY term ∝ n5=2

the mixture can exist at finite density without any trapping,
i.e., in equilibrium with vacuum. Note that the LHY term
competes with the attractive term λ−n2− but it is still much
too weak compared to λþn2þ. This locks the ratio of the

equilibrium densities nð0Þ2 =nð0Þ1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11=g22

p
. Then, omit-

ting the numerical prefactors, the structure of the inter-
action part of the energy functional reads gn2þ − jδgjn2−þ
m3=2ðgn−Þ5=2 leading to the equilibrium value nð0Þ− ∼
δg2=m3g5 ∼ ðδg=gÞ2=a3. This means that the system
remains weakly interacting (gaseous parameter na3 ≪ 1)
under the condition ðδg=gÞ2 ≪ 1. More quantitatively,
we obtain

nð0Þ1 ¼ 25π

1024

1

f2ðm2=m1;1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p Þ
1

a311

δg2

g11g22
; ð6Þ

and explicitly for equal masses

nð0Þi jm1¼m2
¼ 25π

1024

ða12 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p Þ2
a11a22

ffiffiffiffiffi
aii

p ð ffiffiffiffiffiffiffi
a11

p þ ffiffiffiffiffiffiffi
a22

p Þ5 : ð7Þ

For finite particle numbers the system is in the droplet
state. In order to study its density profile and low-
lying excitations we simplify the problem by setting

Ψiðr; tÞ ¼
ffiffiffiffiffiffiffiffi
nð0Þi

q
ϕðr; tÞ, where ϕðr; tÞ is a scalar wave

function [16]. This assumption neglects possible rela-
tive motion of the components, i.e., energy-expensive
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fluctuations of nþ, and more exotic situations such as,
for example, vortex excitations characterized by different
charges in the two components. However, it is justified
for the ground state of the droplet and the low-energy part
of its spectrum. With this reservation, the effective theory
for the field ϕðr; tÞ is governed by the action

S ¼ η

Z
d3 ~rd~t½Reðiϕ�∂~tϕÞ − ~ϵðϕ;ϕ�Þ þ ~μjϕj2�; ð8Þ

where η ¼ ð2=3Þjδgjnð0Þ1 nð0Þ2 ξ3τ and ~ϵðϕ;ϕ�Þ ¼ j∇~rϕj2=
2 − 3jϕj4=2þ jϕj5 is the rescaled energy density. We have
introduced the rescaled coordinate ~r ¼ r=ξ and time
~t ¼ t=τ, where

ξ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

ffiffiffiffiffiffi
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p
=m1þ ffiffiffiffiffiffi
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jδgj ffiffiffiffiffiffi
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p
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s
; τ¼ 3

2

ffiffiffiffiffiffi
g11

p þ ffiffiffiffiffiffi
g22

p

jδgj ffiffiffiffiffiffi
g11

p
nð0Þ1

: ð9Þ

In what follows we denote rescaled quantities by a tilde.
Since the coefficient η is large, η ∼ ðg=jδgjÞ5=2 ≫ 1, the

problem (8) can be treated (quasi)classically. The equation
of motion reads

i∂~tϕ ¼ ð−∇2
~r=2 − 3jϕj2 þ 5jϕj3=2 − ~μÞϕ ð10Þ

and the Gross-Pitaevskii (GP) equation for the ground state
is obtained by setting ϕð~r; ~tÞ ¼ ϕ0ð~rÞ [17]. The chemical
potential ~μ is fixed by the normalization condition
~N ¼ R

d3 ~rjϕ0j2, where ~N is related to the number of

particles of the ith component by Ni ¼ nð0Þi ξ3 ~N. The
uniform solution for infinite ~N corresponds to ϕ0 ≡ 1 and
~μ ¼ −1=2.
For large but finite ~N the ground state is a spherical

droplet of large radius ~R ≈ ð3 ~N=4πÞ1=3 with approximately
unit bulk (saturation) density. Near the surface, if we
denote by ~x the coordinate normal to it, the wave function
ϕ0ð~xÞ satisfies the one-dimensional GP equation of the
form d2ϕ0ð~xÞ=d~x2 ¼ −dUðϕ0Þ=dϕ0, which describes the
classical motion of a particle with coordinate ϕ0 and time
~x in the potential Uðϕ0Þ [19]. The integral of motion
ðdϕ0=d~xÞ2=2þUðϕ0Þ ¼ 0 can be integrated again result-
ing in the implicit formula for ϕ0ð~xÞ

~xðϕ0Þ ¼
1ffiffiffi
3
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ffiffiffi
3

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕ0

pffiffiffi
3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕ0

p þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕ0

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕ0

p
− 1

; ð11Þ

from which we see that the surface thickness is of order ξ
(in initial units). That the corresponding momentum scale
1=ξ is much smaller than pc a posteriori justifies the
applicability of the low-energy effective theory (8). The
surface tension equals ~σ ¼ R

d~x½~ϵðϕ0;ϕ�
0Þ − ~μjϕ0j2� ¼

3ð1þ ffiffiffi
3

p Þ=35 and we obtain the spectrum of the droplet’s
surface modes (ripplons) valid in the limit of large ~N [13]

~ωl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4π=3Þlðl − 1Þðlþ 2Þ ~σ= ~N

q
; ð12Þ

where l > 0 is the angular momentum. The dipolar mode
(l ¼ 1) can be regarded as a center-of-mass displacement of
the droplet; therefore, ~ω1 ≡ 0.
In general, when ~N is not large, the size of the droplet

is comparable to the surface thickness. In this case, we
calculate the wave function ϕ0 (see the upper panel in
Fig. 1) and determine the chemical potential ~μ of the droplet
and its energy ~E ¼ R

d3 ~r ~ϵðϕ0;ϕ�
0Þ numerically. We also

study its small-amplitude excitations by solving the
Bogoliubov–de Gennes equations obtained by linearizing
Eq. (10) with respect to small ϕð~r; ~tÞ − ϕ0ð~rÞ. We find that
with decreasing ~N the droplet becomes metastable ( ~E > 0)
for ~N < 22.55 and unstable for ~N < ~Nc ≈ 18.65. This
effect can be understood by the following qualitative
arguments. For a droplet of size ~R the energy is composed
of the kinetic term ∝ ~N= ~R2, two-body interaction
∝ ð− ~N2= ~R3), and LHY contribution ∝ ~N5=2= ~R9=2. With

decreasing ~N the minimum of ~Eð ~RÞ first becomes
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FIG. 1. Upper panel: the droplet wave function versus
radial coordinate for ~N ¼ ~Nc ≈ 18.65 (solid), ~N ¼ 30 (dashed),
~N ¼ 500 (dash dotted), and ~N ¼ 3000 (dotted). Lower panel: the
rescaled energy per particle ~E= ~N (dash dotted), particle emission
threshold − ~μ (thick dotted), monopole mode frequency ~ω0

(solid), frequencies of higher angular momentum modes ~ωl
(dashed), and the corresponding surface-mode approximation
(12) (thin dotted) versus ð ~N − ~NcÞ1=4.
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metastable (the global ground state corresponds to ~R → ∞)
and then disappears completely. We should mention the
analogy of this situation with the problem of a harmonically
trapped scalar Bose-Einstein condensate with attractive
two-body interactions (see Ref. [18] for a review). In that
case the LHY correction is negligible and the stabilizing
role is played by the potential energy ∝ ~N ~R2. There is also
a metastable minimum, which becomes unstable (in this
case with increasing ~N) as a result of the interplay of the
kinetic, interaction, and potential energies.
In the lower panel of Fig. 1 we show the quantity ~E= ~N

(dash-dotted line), the particle emission threshold − ~μ (thick
dotted line), which separates the discrete and continuum
parts of the spectrum, the frequency of the monopole
mode ~ω0 (solid line), and the frequencies of the higher
angular momentum modes ~ωl (dashed lines) as functions
of ð ~N − ~NcÞ1=4. The thin dotted lines extending above the
particle emission threshold represent the result of Eq. (12).
All excitation modes cross the threshold for sufficiently
small ~N. Only the monopole mode reenters at ~N ≈ 20.1.
Remarkably, in the interval 20.1 < ~N < 94.2 there are no
modes below −μ and, therefore, exciting the droplet is
equivalent to the spilling of particles or, more generally,
to breaking the droplet into smaller pieces. We thus
deal with an automatically evaporating object, which is
also macroscopic since the actual particle numbers are

large, Ni ¼ nð0Þi ξ3 ~N ∼ ðg=jδgjÞ5=2 ~N ≫ ~N.
Let us now discuss excitations involving the relative

motion of the components with finite nþ, neglected in
deriving Eq. (8). In the homogeneous case these modes
correspond to Eþ;k and, for the droplet of size ∼1=ξ, we can
estimate the lowest frequency to be Eþ;1=ξ. In rescaled units

this quantity is approximately ξ=ξh ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
g=jδgjp

≫ 1; i.e., all
such modes are in the continuum. It is also possible to have
a nonzero nþ without exciting the relative motion. Indeed,
starting from the configuration N2=N1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11=g22

p
and

adding, say, δN1 excess particles to the first component
makes ~N proportionally larger leading to a linear gain in
energy ðη=τÞ~μδ ~N ∼ −jδgjnδN1. However, due to the quad-
ratic penalty coming from the term λþn2þR3 ∼ gδN2

1=R
3

(here R ¼ ξ ~R is the droplet radius) one can increase
δN1=N1 only up to a critical value ∼jδgj=g ≪ 1. Beyond
this point the excess particles no longer bind to the droplet.
In the vicinity of the instability point the droplet can

decay by quantum fluctuations similarly to the quantum
tunneling of an attractive scalar trapped Bose gas towards
collapse [20,21]. Although in our case we are dealing with
an expansion to infinity rather than collapse, in both cases
the mechanism is associated with a softening of the
breathing (monopole) mode and its tunneling under a
barrier. In order to estimate the corresponding lifetime
we first note that near the instability point the chemical

potential behaves as ~μ ≈ ~μc −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~N − ~NcÞ= ~N00

q
[22],

where we find numerically ~μc ≈ 0.061 and ~N00 ¼
∂2 ~Nð~μcÞ=∂ ~μ2 ≈ 2190. Let us parametrize ϕ0 by the
chemical potential and introduce the derivative δ ~nð~rÞ ¼
jϕ0ð~rÞj∂jϕ0ð~rÞj=∂ ~μ taken exactly at the critical point. An
excitation “along” δ ~nð~rÞ does not change ~N and corre-
sponds to the monopole mode, the frequency of which
vanishes at the instability point. Close to this point the
tunneling path goes along this soft degree of freedom and
we introduce the corresponding coordinate λ by writing
the density as ~nð~r; ~tÞ ¼ jϕ0ð~rÞj2 þ λð~tÞδ ~nð~rÞ and the wave
function as ϕð~r; ~tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~nð~r; ~tÞ

p
exp½iθð~r; ~tÞ�. Here, the phase

θ is determined by minimizing (8) for a given trajectory
λð~tÞ, which is equivalent to solving the continuity equation
− _~n ¼ ∇~rð ~n∇~rθÞwith respect to θ. In this manner we obtain
the effectively one-dimensional problem with the action

S ¼ η

Z
d~t½meff

_λ2=2 −UeffðλÞ�; ð13Þ

where the effective mass meff ¼ π
R∞
0 ½R ~r

0 ~r02δ ~nð~r0Þd~r0�2=
½~r2 ~ncð~rÞ�d~r ≈ 2240 [here ~ncð~rÞ is the density profile
at the instability point] and the effective potential
UeffðλÞ ¼ ð ~N00=8Þ½ð ~μc − ~μÞλ2 − λ3=6�. The tunneling rate
out of such a quadratic-plus-cubic potential in the quasi-
classical regime equals Γ ¼ A expð−SBÞ [21], where the
bounce exponent SB¼ð3=5Þ221=4ηm1=2

eff
~N00−3=4ð ~N− ~NcÞ5=4≈

3.38ηð ~N− ~NcÞ5=4, Aτ ¼ ~ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15SB=2π

p
, and the monopole

frequency ~ω0 ¼ ½ ~N00ð ~N − ~NcÞ=8m2
eff �1=4 (see Fig. 1). Thus,

for the observation of the macroscopic tunneling, due to the
exponential dependence of Γ, the most relevant region of
parameters is ~N − ~Nc ∼ η−4=5 ∼ ðδg=gÞ2.
Let us now discuss possibilities of having such droplets

in experiments with ultracold gases. A very promising
candidate is the mixture of the second and third lowest
hyperfine states F¼ 1;mF ¼ 0 (state 1) and F¼ 1;mF ¼−1
(state 2) of 39K. The corresponding scattering lengths aij
as functions of the magnetic field have been studied
theoretically [23,24] and experimentally [23]. In particular,
the condition a12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

is satisfied at B0 ≈ 56.77 G
where a11 ≈ 84.3aBohr, a22 ≈ 33.5aBohr, and the quantity
∂ða12 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p Þ=∂B ≈ 12.09aBohr=G. For example, for

B − B0 ¼ −250 mG the saturation densities equal nð0Þ1 ≈
3.3 × 1014 cm−3 and nð0Þ2 ≈ 4.9 × 1014 cm−3, the length
scale ξ ≈ 1.96 μm, and the time scale τ ≈ 2.4 ms. Then,
~N ¼ 30 corresponds to N1 ¼ 0.75 × 105, N2 ¼ 1.1 × 105,
and the droplet wave function is given by the dashed line in
Fig. 1 (upper panel). We can compare the characteristic
time scale τ with the lifetime τlife ∼ K−1

3 ðn1 þ n2Þ−2≈
150 ms, where we use the three-body recombination rate
constant K3 ¼ 10−29 cm6=s [25]. It is also useful to note
that τ scales as jδgj−3 whereas τlife ∝ jδgj−4; i.e., there is
still room for increasing jδgj while keeping τ < τlife. Thus,
one can have very dilute and slow droplets as well as
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dense and fast ones. Another interesting candidate is the
dual-species mixture of 87Rb and 39K, both in the F ¼ 1;
mF ¼ −1 hyperfine state. This mixture is characterized by
positive intraspecies interactions close to an interspecies
Feshbach resonance at B ¼ 117.56 G, which has recently
been explored experimentally [26]. In any case, unless
we are dealing with the microgravity environment [27],
the droplet has to be levitated against gravity. This can
be achieved by using, for example, an optical potential
with a vertical gradient. Our theory can be modified to
include a more general external confinement, say, har-
monic. However, the self-binding and related properties
make sense only if the system is unconfined at least in one
(horizontal) direction.
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