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Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern
formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial
right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular
hexagons. To promote understanding of the path on which the ideal configuration can be reached, two
periodically repeatable models are presented here involving linear elastic fracture mechanics and applying
the principle of maximum energy release rate. They describe the evolution of the crack pattern as a
transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by
means of three-dimensional finite element simulation. The latter technique reproduces the curved crack
path involved in this transition.
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Introduction.—The mainly six-sided basalt columns are
a fascinating phenomenon of pattern formation. They arise
from a network of shrinkage cracks that develop during the
cooling of solidified lava. The cooling starts from the top
and the cracks follow the temperature field into depth, since
thermal shrinkage provides the driving force for the crack
propagation.
At the beginning of the process with increasing stresses

in the top layer of the solidified lava, secondary cracks meet
existing ones at nearly right angles to form so-called T
junctions [1]; see Fig. 5 in Ref. [2], compare also Fig. 2(a).
The right angles follow from the fact that the traction vector
is zero on existing crack faces. In this case an orthogonal
crack leads to the highest energy release per crack face
through the relief of the in-plane stresses. While the pattern
propagates into depth, T junctions change their angles
towards 120°, called Y junctions [1].
Additionally, while propagating, the pattern may coarsen

by leaving segments of the crack network behind. This
phenomenon can be described by fracture mechanics
bifurcation analysis, as in Ref. [3]. It is not covered by
the present calculations. If the lava lake is deep enough so
that the influence of the cooling of the top surface is small
compared to possible convective cooling, a steady-state
regime with a constant solidification rate establishes [4].
The same preference for hexagonal columns has been

found with drying starch slurry [5–7], with repeated drying
and moistening of mud, and with freezing and thawing of
permafrost soil [8,9]. With increasing number of cycles the
crack junctions change from T to Y shape [9].
By visual inspection of a clipped 2D tomographic slice

[cf. Fig. 1(a)] extracted from the 3D tomogram of starch
slurry dried in a deep dish, the preferred hexagonal shape of
the column cross sections becomes obvious; see also a
video of the development of column cross sections in

Ref. [10]. Further evidence for the hexagonality of the
column cross sections is given by image analysis of the
tomographic slice utilizing skeletonization: In Fig. 1(b)
the relative frequency of the inner angles in convex
polygonal representations of column cross sections shows
a peak around 120°.
In Ref. [1] it is assumed that the crack pattern junctions

change because “joints propagate normal to the direction of
local maximum tensile stress and are very responsive to
changes of this direction”.
It has been shown in Ref. [11] that hexagonal compared

to other patterns have lower free Helmholtz energy
(involving elastic and fracture energy), assuming equal
elastic strain energy and equal cross sectional area.
Furthermore, it is stated that a rigorous proof would require
finite element calculations.
In Ref. [12] the pattern maturation was modeled by a

Voronoi pattern with random starting points, maturing by
use of the centers of the polygons as new starting points for

(a) (b)

FIG. 1. (a) 2D slice extracted from a 3D tomogram of dried
starch slurry columns due to shrinkage crack propagation,
showing a tendency towards regular hexagons. (b) Relative
frequency of angles in convex polygons of the column cross
sections analyzed in the tomogram.
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the Voronoi pattern. After some iterations the center points
stopped moving, resulting in the matured pattern that
agrees well with various field site data.
By energy minimization as in Ref. [11] for a 2D elastic

model of the cross sections with respect to the junction
points of the pattern starting from a random pattern,
Refs. [8,13] showed a tendency toward hexagons.
Figure 8 in Ref. [8] shows that matured patterns agree
well with the data from basalt columns at various field sites.
The only characteristic length of the two models, the ratio
of crack face to elastic energy density, provides a too small
column diameter of ≈10−5 m for common values of basalt.
So, Ref. [13] stated that the diameter should depend on

the characteristic temperature field length, as was shown in
Ref. [3] by fracture mechanics bifurcation analysis. There it
was shown that the diameter of the columns is determined
by the competition of two effects: On the one hand, crack
front segments gain more energy by advancing ahead of its
neighbors through unloading them, on the other hand, their
driving force is reduced as they get into a region of lower
thermal shrinkage stress. The influence of the front of the
solidifying lava on the diameter was analyzed using a 2D
model [14].
Recently, crack pattern formation due to thermal shock

has been simulated with a 3D gradient damage model [15]
based on Ref. [16]. There the internal length of the gradient
model is derived from the critical stress at first occurrence
of cracks, which is equivalent to the initial defect length.
The calculated final crack pattern is nearly regular, con-
sisting mainly of hexagons. However, the model based on a
scalar damage variable cannot describe the stress state close
to the crack face so that the interaction between the
segments of the crack network is described only approx-
imately, especially at the junctions. Most of the junctions of
the simulated pattern even near the starting surface are
already close to 120°. T junctions at the start of thermal
shock are not considered; thus, the transition from T to Y
junctions is not described by Ref. [15].
The observed columns show a tendency towards uniform

cross sectional areas with nearly equal crack spacing; see
Ref. [10] and Fig. 1(a). This is compatible with the idea that
equal spacing reduces mutual unloading.
Also, it is known that among all regular arrays with equal

column cross-section area, the hexagonal array is distin-
guished by its smallest total column surface or crack face
area. Hence, with a given amount of energy released by an
extension of the array, the energy release rate is highest for
the hexagonal array. This is well compatible with the real
basalt columns but it does not explain the mechanism by
which they develop from a crack array whose junctions are
reasonably assumed to be mainly of T shape [1,2]. In
reality, the T junctions transform into Y junctions while the
crack array is propagating into depth. It is the aim of this
Letter to show by means of two periodically repeatable
models involving linear elastic fracture mechanics that the

transformation is geometrically possible and mechanically
compelling.
Fracture mechanics for driven cracks and the principle

of maximum energy release rate.—Since the basalt col-
umns have been brought about by crack propagation, any
explanation should somehow involve fracture mechanics.
As a basic principle of fracture mechanics, the energy per
area A required for creating crack face, called the fracture
toughness GC, must be provided by the energy per area
released from the elastic stress field, called the energy
release rate G, if the crack is to propagate without external
loads:

G ¼ −∂Uel=∂A ¼ GC: ð1Þ

Here, Uel denotes the elastic strain energy.
With Eq. (1) the crack growth increment can be

determined but not its direction, because at arbitrary
loading the latter deviates from the locally defined crack
face plane. Several criteria for the growth direction have
been proposed for 2D problems, as, for example, the
maximum circumferential stress [17] or minimum strain
energy density [18]. As first shown by Ref. [19], for many
cases, the criterion of the maximum energy release rate is a
suitable one.
In Ref. [20], for cyclic 3D crack propagation, an

empirical criterion based on local stress intensity factors
was proposed: It introduces two deflection angles, which
could lead in general to a discontinuous crack front, also
called facets, involving the additional problem of the facet
size; see also Ref. [21]. Such discontinuous crack fronts
have been observed for high out-of-plane shear loading
[22], but not at basalt columns. To avoid this very difficult
modeling of a discontinuous crack front, we assume a
continuous 3D crack surface, where the crack face incre-
ment is described by a local crack extension and a
deflection angle with respect to the previous crack plane.
These two quantities can vary along the crack front. Using
configurational forces in Ref. [23], the crack propagation
direction is determined from maximization of the energy
release rate of a local crack front extension. This local
maximization neglects interaction of crack front segments.
Geometrical constraints preclude a propagation of every
part of a curved crack front according to the criterion of
maximum local energy release rate. Therefore, it is
assumed here as a reasonable simplification that every
incremental step of crack propagation is governed by the
maximum of the energy release rate Gav averaged over the
crack front [24]:

Gav → max : ð2Þ

Application to basalt columns with the concept of steady-
state energy release rate.—The network of cracks on basalt
surfaces is dominated by T junctions [1,2], which may
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be ideally modeled by a periodic rectangular pattern in
Fig. 2(a) as a starting configuration for the transition to the
hexagonal pattern with Y junctions. Figure 2(b) shows a
transition from a rectangular pattern with so called X
junctions and a regular hexagonal pattern. By introducing
a new crack segment the X junction turns into two Y
junctions.
Let us analyze these transitions with the concept of

steady-state energy release rate [25], which implies column
growth in a moving steady-state stress field, while the stress
field far ahead (I) and far behind (II) the crack front remains
unaffected. Hence, one can calculate the energy release rate
G without knowing the shape of the crack contour, since
during the advance of the crack only a certain volume of the
state (I) transforms into the state (II). SoG from Eq. (1) can
be written as

G ¼ −
∂Uel

∂A ¼ −
dUel

II − dUel
I

dA
: ð3Þ

We here assume homogeneous thermal shrinkage. Ahead
of the crack front the material is laterally constrained.
According to continuum mechanics the strain energy
density can be calculated as EðαΔTÞ2=ð1 − νÞ. Here E,
α, ΔT, and ν denote Young’s modulus, thermal expansion
coefficient, temperature difference, and Poisson’s ratio. Far
behind the crack front (II) all stresses are relieved and thus
the elastic strain energy is zero. From Eq. (3) for dV ¼
Aqdz and dA ¼ lqdz we obtain

G ¼ EðαΔTÞ2
1 − ν

Aq

lq
; ð4Þ

with Aq being the cross-sectional area and lq the crack front
length in the cross section of the unit cell; see Fig. 3(a) and
3(b). Aq and lq have to be expressed by x, which is the
variable of the transition.
The aspect ratio of the rectangles in Fig. 3(a) has been

chosen to
ffiffiffi
3

p
=2 such that the transition into regular

hexagons can be performed as easily as possible.
(Other rectangles or squares would require more complex
constructions.) By Eq. (4) we derive the normalized energy
release rate

Gð1 − νÞ
EðαΔTÞ2L ¼

ffiffiffi
3

p
ffiffiffi
3

p
− 4ðx=LÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ðx=LÞ2

p ; ð5Þ

depending on the junction point position x; see Fig. 3(a).
Equation (5) gives 2

ffiffiffi
3

p
–3 ¼ 0.464 for x ¼ 0 (T junction)

and a value of 0.5 for x ¼ ð ffiffiffi
3

p
=12ÞL (Y junction); see

Fig. 3(c).
For the transition from X to Y junctions we choose the

rectangles as before. Figure 3(b) shows the geometry but
now the junction point can laterally move in two directions,
described here by x and ψ . The angle ψ is established so
that the energy release rate is maximized; hence, ∂G=∂ψ ¼
0 must hold for a given x, leading to tanψ ¼ L=ð4xÞ. By
this, we obtain the same dependence of G on x as for the
transition from T to Y; see Eq. (5).
For both transitions Eq. (5) shows the highest energy

release rate for regular hexagons; see Fig. 3(c). The
difference in energy release rate between rectangle and
hexagon is only 7.2%. This relatively small difference
explains why patterns observed in basalt may be not quite
regular. This small driving force might not overcome all
irregularities. For larger x=L than

ffiffiffi
3

p
=12 G decreases; see

Fig. 3(c).
Finite element simulation of the T-Y transition.—

Without the restrictions to straight column growth and
homogeneous thermal shrinkage, a numerical solution for
the proposed transition is found here via iterative finite
element (FE) simulation. Stress, strain, and displacement
fields, arising from a inhomogeneous temperature field, are
calculated by the fundamental equations of linear thermo-
elasticity using FE software Ansys [26].
The formation of basalt columns with steady-state

moving temperature field has been observed in Ref. [4].
By means of fracture mechanics bifurcation analysis for a
steady-state temperature field it has been shown in Ref. [3]
that the diameter of the columns is inversely proportional to
the velocity of the steady-state temperature field and that
the difference between effective cooling at the cracks and
convective cooling through porosity has a negligible effect
on the column diameter. For the sake of simplicity we take a
one-dimensional temperature field arising from convection
through porosity. In a coordinate system moving in the z
direction with the velocity v it can be described by

(a) (b) (c)

FIG. 3. Scheme of cross section of the unit cell for (a) transition
from T to Y and (b) transition from X to Y. (c) Analytically
derived normalized energy release rate.

(a) (b)

FIG. 2. Transitions from rectangular to hexagonal periodic
arrays: (a) from T to Y junctions and (b) from an X junction
to two Y junctions.
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Tðz̄Þ ¼
�
T1 þ ΔT½1 − exp ð−z̄v=DÞ� z̄ > 0

T1 z̄ ≤ 0
; ð6Þ

where D is the thermal diffusivity of the material and z̄
belongs to the moving coordinate system. This can also be
seen as a simplification of the steady-state temperature
model of Ref. [4], with neglected latent heat of the
solidifying lava. In the present simulation, curved cracks
are supposed to have a negligible effect on the thermal flux
and hence on the temperature field as well.
The material parameters are taken from Ref. [3] with

α ¼ 7 × 10−6 K−1, D ¼ 5 × 10−7 m2=s, E ¼ 57 × 109 Pa,
ν ¼ 0.21, GC ¼ 84.9 N=m, T1 ¼ 100 °C, L ¼ ð1.5–4Þ m,
and ΔT ¼ 880 K. According to Ref. [2], L ¼ 10 ft ¼
3.048 m is used. The model contains four characteristic
lengths: the fracture mechanical length l0 ¼ GCð1 − νÞ=
½EðαΔTÞ2�, the position of the crack front a0 in Fig. 4(b)
relative to z̄ ¼ 0 of the moving temperature field [Eq. (6)] at
the beginning of the transition, the crack spacing L, and
the characteristic length D=v of the temperature field. In
this work l0 and L are directly given and D=v is taken
from Fig. 7 in Ref. [3] with vL=D ¼ 2 for the bifurcation
boundary.
The boundary conditions are shown at a periodically

repeatable unit cell in Fig. 4(a), where the modeled part is
shaded gray. Symmetry conditions apply at faces b1 to b4
as well as at the uncracked part of the boundary faces c1
and c3, while the crack faces at c1, c2, and c3 are traction
free; compare Fig. 4(b). The boundaries of the 3D FE
model in the z direction are chosen to be at z ¼ �30L and
are assumed to be traction free. Since the thermal shrinkage
far ahead of the crack front is zero and all stresses are
relieved far behind the crack front, these boundaries will
not influence the result.
Basalt columns show mostly straight striations [27]. This

may justify modeling the crack front by straight lines. This
is compatible with the computed, only slightly curved crack
front for hexagonal columns in Ref. [3]. In this way the
tedious numerical calculation of the crack front as in
Ref. [3] is avoided and the x and z coordinates of the
junction point are the only variables to be determined. They

fully describe the crack front of the periodically repeatable
configuration.
Figure 4(b) shows how the simulated crack face is

extended. A time step Δt leads to a displacement of the
temperature field of vΔt in the z direction. The junction
point coordinates x and z are calculated iteratively for a
given time step Δt ¼ L=ð100vÞ, where Eq. (1) defines the
extension of the crack front and Eq. (2) defines the direction
of the crack growth for every time step. A check with the
time step size Δt ¼ L=ð600vÞ produced the same results
within numerical precision.
The derivatives for Eq. (1) are calculated by using finite

differences with the elastic strain energy and the crack face
taken from FE simulations with different crack extensions.
For Eq. (2) the derivative of the energy release rate with
respect to the extension direction is set to zero, where the
derivative is again approximated by finite differences.
The direction is given by the angle φ ¼ arctanðΔx=ΔzÞ.
The finite differences are kept small compared to the other
length of the model, where Δz is chosen in a range of
0.5…1.5vΔt and Δx is chosen from a variation of the kink
angle φ by �3°. Only for the initial kink it has been varied
in a wide range of 0° to 60°. After every time step the model
with the crack front at its new position was remeshed.
An initial kink angle of φ ¼ 43.7° at the junction and

a0 ¼ 2.765L are determined from Eqs. (1) and (2) for the
first calculation step at an arbitrarily chosen time t ¼ 0; see
Fig. 4(b). The calculated transition is shown in Fig. 5,
where after 50 time steps a final junction angle of 120° is
obtained. The mesh has been built from hexaeder elements
with quadratic shape functions containing 306 000 nodes at
the start and 1 150 000 nodes at the end of the simulation of
the transition. Tests with a finer mesh showed no effect on
the resulting transition. The transition length between the
rectangular and the hexagonal pattern appears notably
smaller than the crack spacing L. Figure 5 also shows
that the normalized elapsed time vt=L is almost propor-
tional to the crack growth in the z direction.

(a) (b)

FIG. 4. (a) Top view of a T junction with the FEM model
shaded gray. (b) Scheme of crack front extension for the
simulation.

FIG. 5. Calculated transition from the T to Y junction,
displaying a cutout (−0.22 ≤ z=L ≤ 0.77) of one-half of the
FE model (shaded gray) to show the evolution of the curved crack
face against the normalized time vt=L; see also Fig. 4.
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Conclusion.—It has been shown here that the principles
of fracture mechanics favor the formation of basalt columns
with regular hexagons for cross sections.
By starting from a periodic rectangular array, for

simplicity, reasons have been given why the crack pattern
rearranges itself in the course of crack propagation towards
a hexagonal one. Such reorganization is observed with
basalt columns [1] and in model experiments with drying
starch slurry [7,10]. Rearrangement due to coarsening of
the crack mesh, which usually is less conspicuous in basalt,
has been clearly demonstrated by computer tomographic
analysis of drying slurry [10].
The numerical method applied here might be refined by a

less restricted description of the crack front with Fourier
series for the crack growth increment and deflection angle.
This would lead to more time consuming calculations but
also to a more realistic description of the transition. Also, it
would be applicable to other 3D fracture mechanical
problems with curved crack growth, such as the observed
basalt columns with wavy column faces in [28], which are a
3D variant of the observed wavy cracks in glass strips
in Ref. [29].
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