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By using a model based on the second-order time-dependent perturbation theory, we show that the
nonsequential two-photon double ionization of He can be understood in a virtual sequential picture: to
excite the final double continuum state jk1;k2i by absorbing two photons from the ground state j1s2; 1S0i,
the single continuum states j1s;k1i and j1s;k2i serve as the dominant intermediate states. This virtual
sequential picture is verified by the perfect agreement of the total ionization cross section, respectively,
calculated by this model and by the sophisticated numerical solution to the full-dimensional
time-dependent Schrödinger equation. This model, without the consideration of the electron correlation
in the final double continuum state, works well for a wide range of laser parameters extending from the
nonsequential to the sequential regime. The present Letter demonstrates that the electron correlation in the
final double continuum state is not important in evaluating the total cross section, while it is indispensable
for an accurate computation of a triply differential cross section. In addition, the virtual sequential picture
bridges the sequential and nonsequential two-photon double ionization and reveals connections and
distinctions between them.
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The helium atom is an ideal object for the study of the
quantum three-body problem, which turns out to be a great
challenge for the theoretical description [1,2]. In the double
ionization of He, both the two electrons are driven to the
continuum for which an accurate description is still lacking
[3]. In fact, quantum mechanics does not provide any
analytical wave functions for systems of no less than three
particles. If we artificially neglect or weaken the electron
correlation term 1=r12 ¼ 1=ðr1 − r2Þ (atomic units are used
throughout unless otherwise stated), the two-electron wave
functions can be expressed as a product of one-electron
wave functions. In this case, the laser induced double
ionization can usually be understood as a sequential picture
which can be useful in explaining many double-ionization
phenomena. In the sequential double-ionization picture
of He, one electron is first ejected from the neutral atom
leaving the second electron in the ground state of Heþ,
from which the second electron is subsequently ejected.
However, the existence of the electron correlation may lead
to the breakdown of the sequential picture. In the past
twenty years, much attention has been paid to nonsequen-
tial double ionization [4], whose description is beyond the
sequential picture.
In the double ionization of atoms by strong IR laser

pulses [5–7], it has been widely accepted that the non-
sequential double ionization can be interpreted as a
rescattering mechanism [8], in which an approximate
classical treatment of the electron motion has been shown
to be helpful in the theoretical analysis. However, in the
region of extreme-ultraviolet laser pulses, double ionization
of He can take place by absorbing a few photons, and the

approximate classical treatment of the electron motion
seems helpless. The one-photon double ionization of He
is the most fundamental double-ionization process and
has been well understood after many years of great efforts
[9–11]. However, the two-photon double ionization (TPDI)
is much less understood. The developments of the free-
electron laser [12–14] and the high-order harmonics
[15,16] laser sources provide the possibility to experimen-
tally study the nonlinear TPDI of He, which has contin-
uously attracted a large amount of interest.
The TPDI of He can be sequential if the photon energy ω

is larger than the ionization potential of Heþ (54.4 eV), i.e.,
Heþ ω → Heþ þ e− and then, Heþ þ ω → He2þ þ e−.
Such a sequential picture breaks down if 39.5 eV <
ω < 54.4 eV, in which case TPDI can still happen [17].
In this Letter, we show that even the nonsequential TPDI in
the latter case can be described by a virtual sequential
picture, which allows us to accurately extract the total cross
section (TCS) of the nonsequential TPDI even when the
electron correlation in the relevant two-electron wave
functions is largely neglected.
The TCS is one of the most basic physical quantities to

describe the nonsequential TPDI process. A large number
of sophisticated calculations have been performed to
estimate the TCS of the nonsequential TPDI, but an
indubitable conclusion has not yet been drawn [4].
Theoretical debates focus on the role of the electron
correlation in the double continuum state, and existing
experimental measurements cannot make a final judgement
due to the large uncertainty in evaluating the laser pulse
peak intensity, pulse shape, and pulse duration [12,15,16].
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Many calculations take the strategy of numerically solving
the time-dependent Schrödinger equation (TDSE), in
which the TCS is obtained by projecting the final wave
function to the double continuum [18–25]. Some calcu-
lations, including multichannel theory [26,27] and the
J-matrix method [28], indicate that the electron correlation
in the double continuum is essential to the TCS of the
nonsequential TPDI, while the other calculations, including
external complex scaling [29–32], convergent close
coupling (CCC) [33–35], R-matrix theory [36,37], and
treatment of the electron correlation as a perturbation to
obtain the double continuum [24], support an opposite
view. This divergence makes the nonsequential TPDI even
more mysterious.
The calculation based on the-lowest order perturbation

theory (LOPT) [26,32,34,35,38–40] has also been per-
formed to obtain the TCS. Usually, the double continuum
as the final state is necessary in the LOPT calculations. In
the early LOPT calculation for the TCS [38], the electron
correlation in the double continuum is completely
neglected. However, the TCS obtained in that calculation
is much lower than the later sophisticated calculations. One
may attribute this failure to the neglect of the electron
correlation in the double continuum, but one will see that
this is unfair. We use a model based on the second-order
time-dependent perturbation theory (TDPT) to calculate the
TCS. In the TDPT model, the electron correlation in the
double continuum is also completely neglected. This TDPT
model was previously developed to explain the sequential
TPDI [41–46], but it does not predict zero signal in the
nonsequential photon region. To apply the TDPT model to
the nonsequential TPDI, we are also inspired by another
two works: one is the TDSE calculations performed by
Pazourek et al. [47], who showed that the sequential TPDI
and nonsequential TPDI have universal features; the other
one is the time-independent model reported by Førre et al.
[48], who provided a simple formula to reproduce the TCS.
In the present TDPT model, after the integration of

angles in the two-electron momentum space, the joint
energy spectrum of the two electrons is given by [41]
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1
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where E1 and E2 are the energies of the two electrons, c is
the speed of light, σHeðEÞ and σHeþðEÞ are, respectively, the
one-photon single-ionization cross section of He and Heþ
[49], ωai¼Ea−Ei;ωfa¼Ef−Ea, ωbi ¼ Eb − Ei;ωfb ¼
Ef − Eb, Ei ¼ −2.9037, Ea ¼ E1 − 2.0, Eb ¼ E2 − 2.0,
Ef ¼ E1 þ E2, and the function KðEaÞ is given by

KðEaÞ ¼
Z

∞

−∞
dτ1Fðτ1Þeiωfaτ1

Z
τ1

−∞
dτ2Fðτ2Þeiωaiτ2 ; ð2Þ

where FðtÞ is the electric field of the laser pulse. Replacing
the subscript a by b in Eq. (2), one immediately obtains
KðEbÞ. The total probability for double ionization is given
by Ptotal ¼ ∬PðE1; E2ÞdE1dE2, and the TCS is evaluated
by σ ¼ ðω=I0Þ2ðPtotal=TeffÞ, where I0 is peak intensity of
the laser pulse and Teff is an effective pulse length given
by Teff ¼

R∞
−∞ f4ðtÞdt, with fðtÞ being the envelope of

the laser pulse. For the sin2 envelope used presently,
Teff ¼ 35T=128, where T is the total pulse duration.
In Figs. 1(a) and 1(b), one can see that, in the whole

nonsequential regime, the TDPT model nicely reproduces
the TCS from the TDSE calculations by Pazourek et al.
[47] for different pulse durations: 1, 4, 11, and 20 fs. The
pulse duration of 20 fs [green solid circles in Fig. 1(b)]
reported by Pazourek et al. [47] is the longest laser pulse
ever used in the TDSE calculation of the TCS, as far as we
know. Compared with the time-independent model [48]
given by Førre et al. [small black solid circles in Fig. 1(b)],
the result from the present TDPT model is closer to that of
the TDSE calculation for 20 fs. In the TDPT model,
changing the pulse duration from 20 to 100 fs, the TCSs
at the photon energy of 53.5 and 54 eV do not change
significantly, i.e., it does not make the present TDPT model
closer to the time-independent model of Førre et al. [48].
The cross section is defined for the ideal infinitely long

pulse. It is possible to obtain the long pulse limit of the
present TDPT model, in which case the singly differential
cross section will be given by

dσ
dE1

¼ ω2

4π
jF1 þ F2j2; ð3Þ

F1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σHeðE1ÞσHeþðE2Þ
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1
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FIG. 1 (color online). TCS of the nonsequential TPDI. (a) The
TDPT model calculations (lines labeled by the pulse duration) are
compared with the TDSE calculations by Pazourek et al. [47]
(large symbols). In the right panel (b), the black solid line is
the infinitely long pulse limit of the TDPT model [see Eq. (3)];
the small solid circles are the results calculated according to the
time-independent model provided by Førre et al. [48].
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F2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ωbiωfb

s
1
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where E1 þ E2 ¼ 2ω − 2.9037. The TCS for the infinitely
long pulse limit is given as the black solid line in Fig. 1(b).
One can see that the TCSs for the 20 and 100 fs pulses,
indeed, approach the present long pulse limit, rather than
the time-independent model of Førre et al. The singly
differential cross section from the time-independent model
of Førre et al. can be expressed as [48]

dσ
dE1

¼ ω2

2π
ðF1

2 þ F2
2Þ: ð6Þ

Equation (6) is identical to Eq. (3) in the case of F1 ¼ F2,
while, in other cases, Eq. (6) always predicts larger values
than that of Eq. (3). For the photon energy far from the
sequential threshold, one actually has F1 ≈ F2, thus, the
time-independent model of Førre et al. is equivalent to ours.
Similar expressions were also reported in Refs. [43,45].
The result given by Eq. (8) in Ref. [43], which can be
obtained by setting ωaiωfa ≈ ωbiωfb ≈ ω2 in Eq. (3), is
actually smaller than that from the above Eq. (3).
For the second-order perturbation calculation, besides

the intractable problem of the electron correlation, another
challenge is to handle an infinite number of intermediate
states. In the early LOPT calculation [38], several singly
excited bound states j1snpi were chosen to be the
dominant intermediate states. We assert that this approxi-
mation, rather than the neglect of the electron correlation in
the double continuum, leads to the failure in the calculation
of the TCS. In the present TDPT model, the singly ionized
continuum states j1s;k1i and j1s;k2i are assumed to be the
dominant intermediate states which lead to the excitation of
the double continuum state jk1;k2i. This assumption is
widely taken in the sequential TPDI [42–46,50], since it
obviously corresponds to the real sequential picture. Here,
we have seen that an assumption of a virtual sequential
picture is also valid for the nonsequential TPDI.
The present model can address the physical connections

and distinctions between the sequential and nonsequential
TPDI. The deep connection between the two processes is
that they have the same kind of intermediate states, i.e., the
singly ionized continuum states. For this reason, the two
TPDI processes have many common features [47]. It can be
mathematically proven that the transition matrix from the
other intermediate states, except the single-ionization
continuum to the double-ionization continuum, will be
zero in the condition that the electron correlation is
completely neglected. This conclusion may explain why
single-ionization continuum states are dominant. Given this
deep connection between the sequential TDPI and the
nonsequential TPDI, one might not be too surprised at the
success on the TCS of the present model. The distinction

between the two TPDIs is whether resonances can actually
happen or not. For the sequential TPDI, the sequential
peaks (E1 ¼ ω − 0.9037 a:u:, E2 ¼ ω − 2.0 a:u:) in the
energy spectrum, in fact, correspond to resonances, i.e.,
the energy difference between the intermediate states
and the final states and the energy difference between
the ground state and the intermediate states happen to be the
energy of the incident photon. In this resonance case, the
denominator in Eq. (4) or Eq. (5) can be zero, which makes
it impossible to define the cross section for the sequential
TPDI. However, such resonances will never actually
happen in the nonsequential TPDI.
To show that the TDPT model can uniformly describe

the sequential and nonsequential TPDI, we extend the
photon energy above the sequential threshold to calculate
the TCS. In Fig. 2, we compare results from the TDPT
model with those of TDSE calculations, whose method-
ologies have been reported previously [41,50–52]. Again,
one finds perfect agreement in the sequential regime for
different pulse durations. For the sequential TPDI, the TCS
is not a well-defined physical quantity; since the total
double-ionization probability is proportional to the square
of the pulse duration, the TCS is proportional to the pulse
duration and will not converge to a finite value as the laser
pulse is increased.
For the crossover from the nonsequential to the sequen-

tial TPDI, the TCS shows a sharp rise [19,32,53], and
extremely long laser pulses are needed to extract a con-
vergent TCS. In the numerical TDSE calculations, it is a
daunting task to study the pulse-duration dependence for
the two-photon absorption very close to the sequential
threshold. In Fig. 3, we show the predictions from the
TDPT model in the photon energy region 54.0–54.4 eV,
which is close to the sequential threshold. In this photon
energy region, there are obviously visible pulse-duration
dependences even for the laser pulses longer than 20 fs. The
TCS extracted from the 1000 fs laser pulse does approach
the long pulse limit. Also, one can see that the predictions
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FIG. 2 (color online). Similar to Fig. 1, and the photon energy is
increased above the sequential ionization threshold of 54.4 eV.
The results of the TDPT model (lines) are compared with those of
the TDSE calculations (symbols). The left panel is an enlarged
version for part of the right panel.
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from the time-independent model of Førre et al. [48] is
exactly twice of the present long pulse limit. This is
because that the contributions from two ionization paths
via j1s;k1i and j1s;k2i are extremely unequal. Let us mark
the electron with the smaller energy as k< and the larger
one as k>. In the case that jk<j is much smaller than jk>j,
the transition from the ground state to j1s;k>i and the
transition from the j1s;k>i to the double continuum
jk<;k>i is near resonant, i.e., the photon energy is quite
close to the energy difference between the relative two
states. Thus, the contribution of the intermediate state
j1s;k>i can be extremely large. This explains the sharp
rise of the TCS [19,32,53] and the extremely unequal
energy sharing between the two ejected electrons [21] near
the sequential threshold. Since the ionization path via
j1s;k>i is much more important than the one via
j1s;k<i, we can neglect the less important one in our
model calculation. Then the long pulse limit Eq. (3) can
be reduced to ðdσ=dE1Þ ¼ ðω2=4πÞF>

2, while the time-
independent model of Førre et al. Eq. (6) can be reduced to
ðdσ=dE1Þ ¼ ðω2=2πÞF>

2, where F> corresponds to the
ionization path via j1s;k>i. Now, the origin of the differ-
ence between these two models becomes clear. The
calculation that only includes the dominated ionization
path (ðdσ=dE1Þ ¼ ðω2=4πÞF>

2) is shown in Fig. 3 as green
solid squares, which also agrees well with the long pulse
limit (black solid line). One should note that the double
ionization can be more complex for photon energy very
close to the threshold, since the two-photon excitation-plus-
ionization process of the Rydberg series, which is beyond
the present model, may contribute to the two-electron
ejection [40].

In the perturbation calculations, the requirement for the
electron correlation in the double continuum can be more
strict than that in the TDSE calculation, because, in the
latter case, the effect of the electron correlation in the
double continuum can be largely reduced by a sufficiently
long free propagation of the final wave function [47].
Though the utilization of the uncorrelated double continuum
leads to rather “accurate” results of TCS, the present TDPT
fails in the prediction of the triply differential cross section
(TDCS). In the TDPT model, the angular distributions of
the two electrons simply depend on cos2 θ1 cos2 θ2, which is
obviously insufficient to describe those TDCSs reported
from TDSE calculations [20]. It seems that the effect of the
electron correlation for the two-photon double ionization
can be divided into two steps: in the first step, the two
electrons decide to overcome the bounding of the nucleus,
and the main role of the electron correlation is to reduce
the double-ionization potential; in the second step, the two
electrons gradually leave the nucleus and the electron
correlation will significantly change the ejection directions
of the two electrons butwithout changing the total ionization
probability any more. Our present model can describe “the
first step” but fail in “the second step,” for which the
inclusion of the electron correlation in the double continuum
would be indispensable.
In summary, we assume that the single continuum states

j1s;k1i and j1s;k2i are the dominant intermediate states
for the excitation of the double continuum jk1;k2i in the
two-photon double ionization of the ground-state He. This
assumption corresponds to a virtual sequential picture,
which can universally describe the sequential and non-
sequential TPDI. Further, by completely neglecting the
electron correlation in the final double continuum and
intermediate single continuum, the “accurate” TCS can be
obtained. The dependence of the TCS on the pulse duration
in the TDSE calculations can be perfectly reproduced by
the present TDPT model. For photon energy far from
(much smaller than) the sequential threshold, the contri-
butions from the two intermediate single continuums are
approximately equal in the calculation of the TCS.
Nevertheless, for photon energy around the sequential
threshold, TPDI is dominated by the ionization path via
the single continuum that corresponds to the release of the
high energy one of the two electrons. The connections and
distinctions between the long pulse limit of the present
TDPT model and the time-independent model of Førre
et al. [48] are also analyzed. This Letter advances new
understanding of the TPDI of He and calls attention to
more reliable experimental measurements. Combining
the present idea of the virtual sequential picture with
those sophisticated methods which aim to address the
electron correlation in the double continuum such as the
CCC method [33–35] and the three-body Coulomb wave-
function method [54–57], one may obtain reasonable
angular distributions of the two ejected electrons in TPDI.
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FIG. 3 (color online). Similar to Fig. 1 but for photon energy
close to the sequential threshold. The symbols or lines labeled by
the pulse duration are the results from the TDPT model. The
black solid line is the infinitely long pulse limit of the TDPT
model [see Eq. (3)]. The black solid circles are the results from
the time-independent model [48] of Førre et al. [see Eq. (6)],
which have been divided by two. The green solid squares are the
results from the infinitely long pulse limit calculation by only
including one of the most dominated ionization paths, see the text
for details.
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