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We theoretically demonstrate the possibility to generate both trains and isolated attosecond pulses
with high ellipticity in a practical experimental setup. The scheme uses circularly polarized, counterrotating
two-color driving pulses carried at the fundamental and its second harmonic. Using a model Ne atom, we
numerically show that highly elliptic attosecond pulses are generated already at the single-atom level.
Isolated pulses are produced by using few-cycle drivers with controlled time delay between them.
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High harmonic generation (HHG) in atoms and mole-
cules is a highly nonlinear process that up-converts intense
infrared laser field into the extreme ultraviolet (XUV) and
soft x-ray radiation [1–4]. The emitted light can be used to
track quantum dynamics underlying the nonlinear response
[5–8], or as a tabletop source of bright, coherent, ultrashort
pulses [9–12].
In the latter case, generation of circular or highly elliptic

high harmonics and/or attosecond XUV pulses is very
important. Such pulses would find numerous applications,
e.g., in chiral-sensitive light-matter interactions such as
chiral recognition via photoelectron circular dichroism
[13–15], study of ultrafast chiral-specific dynamics in
molecules [16,17], and x-ray magnetic circular dichroism
spectroscopy [18–24], including time-resolved imaging
of magnetic structures [18–22]. Tabletop sources of sub-
100 fs, or even attosecond, chiral pulses would be a real
breakthrough for laboratory-scale ultrafast studies. Not
surprisingly, the search for schemes enabling the generation
of short, coherent XUV pulses with tunable polarization is
a very active area of research; see, e.g., Refs. [16,25–39].
Importantly, the control over polarization is desired

not only for individual harmonics, where it has just been
demonstrated [35,36], but also for individual attosecond
pulses, both isolated and in a train, where a robust and
practical scheme is still lacking.We show away to solve this
problem, proposing a practical scheme for the generation of
highly elliptic attosecond pulses, both single and in a train.
An elegant solution to generating individual high harmon-

ics with circular polarization has been found by Becker and

co-workers [28,29,31,32]; see also [40] for strongly related
ideas. It relies on combining a circularly polarized funda-
mental field with a counterrotating second harmonic. The
resulting electric field peaks three times within one cycle of
the fundamental, producing three ionization bursts. The
electron promoted to the continuum near the peak of the
instantaneous field can successfully revisit the parent ion
within about a half-cycle, emitting an attosecond radiation
burst [28,29].
This approach has now been very successfully used in

Refs. [35,36], demonstrating generation of bright, phase-
matched high harmonic radiation. Importantly, tuning the
ellipticity of one of the fields allows one to tune the ellipticity
of the generated harmonics from linear to circular [35].
While the theoretical interpretation of this control is an
interesting question in its own right [33,35], the approach
is very promising. However, until now the possibility of
extending this scheme from controlling the polarization
of individual harmonics to controlling the polarization of
isolated attosecond pulses looked far from straightforward.
Indeed, the driving field dictates that the direction of

electron return rotates by 120° three times per cycle.
Consequently, recombination with an s state yields three
linearly polarized attosecond bursts per cycle, with polari-
zation rotating by 120° from burst to burst [29].
This can also be seen in the frequency domain. The

harmonic lines are at energies �n�1�ω�2nω��3n�1�ω
and nω� �n� 1�2ω � �3n� 2�ω. In a centrally sym-
metric medium, and for circularly polarized driving fields,
the selection rules dictate that the Ω � �3n� 1�ω line
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has the same helicity as the fundamental while the
Ω � �3n� 2�ω line has the same helicity as the second
harmonic (Ω � nω� 2nω � 3nω is parity forbidden)
[31,32,35,36,41,42]. Thus, the harmonics have alternating
helicity. Adding harmonics of alternating helicity with
equal intensity yields an attosecond pulse train where each
subsequent pulse has linear polarization rotated by 120°, in
concert with the time domain picture.
Suppressing every second allowed harmonic line, e.g.,

Ω�3n�2� � �3n� 2�ω, would solve the problem of gener-
ating individual attosecond pulses with circular polariza-
tion. Kfir et al. [36] suggested that such suppression can be
achieved by optimizing the phase-matching conditions in a
gas-filled hollow fiber and reported substantial suppression
of the lines, Ω�3n�2� � �3n� 2�ω.
Here, we show that relative intensities of the counter-

rotating harmonic lines strongly depend on the orbital
momentum of the initial state. For an initial p state (as for
neon, argon, or krypton gas), the harmonics corotating with
the fundamental field can be much stronger than those
corotating with the second harmonic. The effect is found
with the contribution of both degenerate sublevels, p�
and p−, included in the calculation. As a result, circularly
polarized attosecond pulses are generated already at the
microscopic, single-atom level; see Fig. 1. Additional help
from phase matching is a bonus, but not necessary.
Next, we extend the scheme to generation of isolated

attosecond pulses. We show that when the counterrotating
driving pulses become relatively short, e.g., 7–8 fs for the
800 nm driver and its second harmonic, one can generate an
isolated attosecond pulse, or a controllable train with 2 or 3
pulses, by tuning the time delay between the fundamental
and the second harmonic.
To demonstrate these effects, we numerically solve the

time-dependent Schrödinger equation (TDSE) for a 2D
neonlike model atom, for counterclockwise (�) polarized
fundamental and clockwise (–) polarized second harmonic.
We show that the harmonics generated from orbitals with
m � �1 differ from those generated from s orbitals in two
important ways. Firstly, the height of the adjacent left- and
right-circularly polarized harmonics can differ by an order of
magnitude, with the m � 1 state favoring harmonics coro-
tating with the fundamental and the m � −1 state favoring
harmonics corotating with the 2ω field. Secondly, once
the two contributions are added coherently, � polarization
continues to dominate in a broad spectral range, leading to a
highly elliptic circularly polarized attosecond pulse train
already at the single-atom level. Our findings are in accord
with Ref. [36] (see Ne spectra in Fig. 3 of Ref. [36]), where
such disparity was attributed to phase matching.
We solve the TDSE in the length gauge (atomic units are

used throughout unless stated otherwise):

{
∂
∂t
Φ�t; r� � �T̂ � V�r� � r ·E�t��Φ�t; r�: �1�

The 2D model potential is taken from [43]:

V�r� � −
Z�r���������������
r2 � a

p ; �2�

where Z�r� � 1� 9 exp�−r2� and a � 2.88172 to obtain
the ionization potential of the Ne atom Ip � 0.793 a:u: for
the 2p orbitals. The 1s state has an energy E1s�
−2.952a:u: and the 2s energy is E2s � −0.217 a:u:. For
reference calculations we use 1s as the initial state but keep
the same ionization potential taking Z�r� � 1 and
a � 0.1195. The laser electric field is

E�t� � Eirf�t��cos�ωt� � cos�2ωt��x̂
� Eirf�t��sin�ωt� − sin�2ωt��ŷ; �3�

where f�t� is the trapezoidal envelope with 2 cycle rising
and falling edges and 5 cycle plateau (in units of funda-
mental). The ω field rotates counterclockwise (�). The
second harmonic rotates clockwise (−).
The TDSE is propagated on a 2D Cartesian grid using a

Taylor-series propagator with expansion up to eighth order
[44]. A complex absorbing potential,

Vc�x� � η�x − x0�n; �4�
with η � 5 × 10−4 and n � 3 is used to avoid nonphysical
reflections from the boundary. Other simulation parameters
are summarized in Table I.
Convergence was tested with respect to the absorbing

potential, the time step, and the spatial grid. Note that
HHG in bicircular fields is dominated by very short
trajectories [28].
The initial wave functions were obtained using imagi-

nary time propagation filtering out the ground state wave
function to obtain px and py orbitals. The p� states are
defined as p� � px � ipy. The laser intensity was kept
such as not to exceed 5% ionization and to avoid strong
shifts and mixing of the degenerate atomic orbitals
described in Ref. [43]. The spectra were obtained by
performing the Fourier transform of the time-dependent
dipole acceleration, evaluated at every 0.5 a.u.
The results are robust with the variation of the pulse

length, the shape and length of its rising and falling edges,
laser intensity, and wavelength: we performed calculations
from λ � 600 nm up to λ � 1200 nm.
Figure 1(a) shows reference spectra obtained for the 1s

initial state of the model potential with Ip of neon. It agrees
well with previously published results [28,32,35,36]; the
harmonics come in pairs �n� 1�ω� n2ω � �3n� 1�ω

TABLE I. Parameters of the calculations in atomic units unless
stated otherwise.

Laser frequency ω 0.05 (λ � 911 nm)
Laser electric field Eir 0.05 (I � 0.88 × 1014 W=cm2)
Grid step size dr 0.2
Time step size dt 0.005
Propagation time T 1250 (30.2 fs)
Maximal grid extent Xmax �60
Absorbing boundary x0 �36
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and nω� �n� 1�2ω � �3n� 2�ω of similar heights. The
left harmonic in the pair has the same polarization as the
fundamental field; the right harmonic follows the 2ω driver.
The harmonics 3nω are parity forbidden.
Figures 1(b) and 1(c) show spectra for the p� and p−

initial states. For the p� initial state, the harmonics that
have the same polarization as the driving IR field are
preferred. For the p− initial state, the harmonics with the
same polarization as the 2ω driver are stronger. There are
additional spectral variations in the plateau region, different
for p� and p− orbitals. There is also a qualitative difference
between the below-threshold (<Ip) and above-threshold
(>Ip) harmonics, showing that the evolution of the

photoelectron in the continuum is critical for the observed
propensity in the harmonic strengths.
Figure 1(d) shows the spectra obtained from adding the

contributions from the p� and p− orbitals coherently, as
required. In the plateau region, harmonics with the same
polarization as the driving IR field dominate over those
with opposite polarization.
The subcycle dynamics of the emission process was

analyzed using the Gabor transform (GT) [45] of the time-
dependent acceleration dipoles a�t�:

GT�Ω; t0� �
1

2π

Z
dta�t�e−iΩte−�t−t0�2=�2T2�; �5�

where we have chosen T � 1=3ω. The reference spectro-
grams for the 1s initial state in Figs. 2(a) and 2(b) show the
time-dependent intensity [2(a)] and ellipticity [2(b)] for
time-resolved spectra, in the regions where spectral ampli-
tudes are significant. As expected, there are three radiation
bursts per ω cycle with linear polarization, as predicted in
Refs. [28,29,32].
Figures 2(c) and 2(d) show the same spectrogram for the

2p state, i.e., the coherent superposition of the radiation
from p� and p− states. Although the signal strength in the
spectrogram is similar to the s orbital, the ellipticity of the
emitted radiation is very different. Three distinct regions
can be identified: (i) below threshold region, where the
ellipticity is mostly negative, (ii) the middle region, where
the ellipticity is high and positive, and (iii) near cutoff
region where the emitted radiation is mostly linear. The
energy region (ii) of the spectrogram coincides with the
spectral window in Fig. 1(d) where the difference between
clockwise and counterclockwise harmonics is the greatest.

FIG. 1 (color online). Spectra for (a) 1s, (b) 2p�, (c) 2p− initial
states, and (d) equal mixture of 2p� and 2p− states. Colors mark
harmonics corotating (red) and counterrotating (blue) with the
ω field.

FIG. 2 (color online). Time-resolved XUV emission intensity
and ellipticity from (a),(b) 1s and (c),(d) 2p orbitals. Color in (b)
and (d) indicates the ellipticity of the spectral components in the
regions where the amplitude of the spectrogram is significant.
The horizontal dashed lines mark the Ip.
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Application of bicircular fields is naturally extended from
the generation of an attosecond pulse train to the generation
of an isolated attosecond pulse, using short driving pulses
and changing the time delay between them. Indeed, the
harmonic emission driven by circular fields is only possible
when the two counterrotating circular pulses overlap. Given
the high nonlinearity of the overall process (including
ionization), it will be limited to the temporal window where
the two driving pulses overlap with nearly equal and high
intensity. This idea is tested in Fig. 3, which shows time-
resolved spectrograms and ellipticity of the emitted light for
λ � 800 and 400 nm counterrotating drivers with full width
at half maximum duration of 4 fs and sin2 envelope with
I � 1.7 × 1014 W=cm2 peak intensity, for two time delays.
In the case of perfect overlap, three attosecond pulses are
generated. Delaying the low-frequency pulse by 2.6 fs (full
period of 800 nm field) yields two attosecond pulses with
strong ellipticity, that are well separated in energy. An
isolated pulse would be obtained by filtering the lower or
higher energy pulse. With shorter driving pulses, a single
isolated attosecond pulse will be generated.
What is the physical origin of the HHG sensitivity to

the angular momentum of the initial state? The energy
and angular momenta that the electron accumulates from
the laser field while propagating in the continuum are
transferred to the harmonic photon upon recombination.
The matrix elements associated with recombination are the
complex conjugate of the photoionizationmatrix elements. In
2D one photon ionization with the field corotating with the

initial state is much more likely than with counterrotating
field. This is a direct analogue of Fano-Bethe propensity rules
[46] and is also the case for Rydberg states corotating and
counterrotating with the field [47,48].
Consider the harmonic spectra from the p� orbital.

The right-circularly polarized harmonics result from the
�n� 1�ω� n2ω pathway. The recombination step is
conjugated to photoionization from the p� state with a
corotating field, favored by the propensity rules. The
left-circularly polarized harmonics result from the nω�
�n� 1�2ω pathway. The recombination step is conjugated
to photoionization from the p� state with a counterrotating
field, disfavored by the propensity rules. This explains the
relative heights of the harmonic pairs for the p� initial
state. The same analysis explains why harmonics corotating
with the 2ω field are preferred for the p− initial state.
But why is p� dominant over p−? The answer lies in the

stronger effect of the lower-frequency (counterclockwise)
field on the continuum electron, which leads to higher
population of the continuum states with positive angular
momentum than the population with the negative angular
momentum. The more probable recombination from such
states is to the p� state, by emitting light with counterclock-
wise polarization.
The carrier-envelope phase stabilization controls the

orientation of the polarization ellipse of the attosecond pulse,
but not the pulse. Indeed, as long as the relative phase
between the two pulses, ω and 2ω, is locked, changing
the carrier-envelope phase will rotate the trefoil pattern of
the driving field and thus the polarization ellipse of the
attosecond pulse but will not alter its high ellipticity.
This property, in combination with the possibility of using
relatively routine durations of the two driving pulses, makes
the scheme extremely attractive for practical implementation.
Finally, we comment on the difference between the 2D

model presented here and a 3D system. Since the harmonic
dipole for the m � 0 orbital is negligible, the only expec-
ted difference is the additional spreading of the continuum
electron wave packet in the direction perpendicular of the
place of polarization of the driving field. Such spreading is
identical for both p� and p− orbitals and thus will not
change the relative intensity of the corresponding harmon-
ics. Consequently, we expect that our results stand in the
full 3D case. In this context, we would also like to bring
the reader’s attention to the recent 3D strong field approxi-
mation calculations of HHG for a Ne atom in a two-color
bicircular field [49] where similar results of the intensity
of left- and right-circularly polarized harmonics from
m � �1 orbitals have also been found.

We thankEmilioPisanty,FelipeMorales,WilhelmBecker,
and Dejan Milošević for valuable discussions. Financial
support from the FP7 Marie Curie ITN CORINF, the
EPSRC Programme Grant No. EP/I032517/1, and partially
from the U.S. Air Force Office of Scientific Research under
program No. FA9550-12-1-0482 is acknowledged.
The computer codes and data used to produce this Letter

can be downloaded from Ref. [50].

FIG. 3 (color online). Time-resolved XUVemission from a 2p
orbital, for time-delayed 4 fs full width at half maximum 800 and
400 nm pulses. (a) Spectral intensity and (b) time-dependent
ellipticity for perfect overlapof the twopulses. (c) Spectral intensity
and (d) time-dependent ellipticity for the two-pulse delay of 2.6 fs.
Spectra in (c) is multiplied by a factor of 2 to enhance the contrast.
Color in (b) and (d) indicates the ellipticity of the spectral
components in the regions where the amplitude of the spectrogram
is significant. The horizontal dashed lines mark the Ip.
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