
Bulk-Boundary Duality, Gauge Invariance, and Quantum Error Corrections

Eric Mintun,1 Joseph Polchinski,1,2 and Vladimir Rosenhaus2
1Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
(Received 15 February 2015; revised manuscript received 17 August 2015; published 7 October 2015)

Recently, Almheiri, Dong, and Harlow have argued that the localization of bulk information in a
boundary dual should be understood in terms of quantum error correction. We show that this structure
appears naturally when the gauge invariance of the boundary theory is incorporated. This provides a new
understanding of the nonuniqueness of the bulk fields (precursors). It suggests a close connection between
gauge invariance and the emergence of spacetime.
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Introduction.—The emergence of bulk spacetimes with
gravity from nongravitational boundary theories is a
remarkable and fundamental discovery [1]. A deeper
understanding of how local bulk information is encoded
in the boundary theory has been the goal of much work. It is
believed that a subregion of the boundary theory describes
a corresponding subregion of the bulk, the causal wedge
[2–4]. Recently, Almheiri, Dong, and Harlow have framed
some sharp puzzles in this regard [5]. They note a striking
parallel between these and the ideas of quantum erasure
correction and quantum secret sharing.
In this Letter, we show that quantum error correction and

quantum secret sharing appear automatically as a conse-
quence of boundary gauge invariance. The resulting con-
struction differs from standard examples of error correction
in that the precursors act in the full space of gauge-invariant
states; it is not necessary to introduce a distinct code
subspace. We illustrate this in two simple models, a discrete
model similar to one in Ref. [5] and a free-field model of
precursors. This observation gives a deeper and more
general understanding of the nonuniqueness of the pre-
cursor construction. While a local bulk operator is dual to
many different conformal field theory (CFT) precursor
operators, they are all equivalent when acting on gauge-
invariant states.
A discrete model.—The puzzles of Ref. [5] deal with

“precursors” [6–10], CFT operators dual to local bulk
operators. The first puzzle is that bulk locality requires a
precursor to commute with all spacelike separated local
CFT operators. (To be precise, there are limitations to the
commutativity due to gravitational dressing at higher order
in 1=N [11–13], which we will discuss later.) The second
puzzle is that one can cover the CFT by three patches, A, B,
C, such that the precursor can be reconstructed from any of
the group AB, BC, or CA, though not from A, B, or C
separately. Thus, the bulk information is stored in the CFT
in a very nonlocal way. As Ref. [5] notes, this is strongly
reminiscent of quantum erasure correction and quantum
secret sharing [14].

It might appear challenging to construct CFT operators
having such properties, but we exhibit here a simple model
in which they are realized precisely, and in which gauge
invariance plays an essential role. As in Ref. [5], we model
the boundary theory by three sites, as in Fig. 1. The new
ingredient is an OðNÞ gauge symmetry, which for sim-
plicity we take to depend on time but not on space, so that
its only effect is to constrain the Hilbert space to invariant
states. In our example, each site has a single bosonic degree
of freedom transforming in the N of OðNÞ. These are
denoted ðϕi

a; πiaÞ, where the subscript denotes the site and
the superscript is the OðNÞ index; dot products will always
be on the OðNÞ indices.
We wish to construct a nontrivial precursor operator that

commutes with the local gauge invariants, those that are
restricted to any single site. To do this, we note that ϕϕ, ϕπ,
and ππ, which generate the complete set ofOðNÞ invariants
on site a, form an SLð2; RÞ algebra. The doublet ðϕi

a; πiaÞ
transforms as the fundamental representation of this alge-
bra, so the antisymmetric combination

Lij
a ¼ ϕi

aπ
j
a − ϕj

aπia ð1Þ

FIG. 1. Focusing on a single time slice of anti–de Sitter (AdS)
space, bulk microcausality requires the operatorΦð0Þ to commute
with all spacelike-separated local operators. By the holographic
dictionary, the boundary limits of such bulk operators are local
CFT operators OðxÞ, which must thus commute with Φð0Þ.
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is a singlet with respect to the SLð2; RÞ on site a, while
obviously commuting with the invariants on all other sites.
Thus, any linear combination of the operators

Pab ¼ Lij
a L

ij
b ð2Þ

is a gauge-invariant operator satisfying the conditions.
These are nontrivial; for example, P12 does not commute
with ϕ2ϕ3. The bulk precursors can then be built out of the
Pab’s. For example, P12 þ P23 þ P31 should be Φð0Þ.
The Pab’s appear to be double trace operators, while the

bulk fields should be single trace. However, normal order-
ing will induce single-trace terms, and these are the leading
terms in 1=N; we will see an example in the next section.
Since the appropriate normal-ordering prescription will
depend on the background, a background-independent
precursor will have different single-trace parts in different
backgrounds.
A better way to understand this construction is to note

that Lij
a is the generator of OðNÞ transformations acting on

site a, and so it commutes with invariants on any single site.
Any invariant built out of the Lij

a thus commutes with all
local invariants. These are nontrivial in general, as only the
total OðNÞ generator Lij ¼ P

aL
ij
a annihilates all physical

states. Note also that

P12 ¼ −P22 − P32 þ LijLij
2 : ð3Þ

It follows that on physical states P12 is equivalent to
−P22 − P32, which does not involve the site 1 at all.
For any operator Aij in the adjoint, the combination

LijAij annihilates all gauge-invariant states,

LijAij ≅ 0: ð4Þ

Note that LijAij ¼ AijLij. Also, the commutator of the
operator (4) with an invariant,

½LijAij;S� ¼ Lij½Aij;S�; ð5Þ

need not vanish identically, but it vanishes on physical
states because we can commute Lij through to the right.
The gauge-invariant precursors thus have natural error

correction built in. We can read messages encoded in any of
the Pab’s by looking at the state on any two sites, while
observables on any single site contain no information about
any Pab’s. Note that, in addition to erasing any single site,
we can introduce arbitrary gauge-invariant one-site errors
on the remaining sites without losing the message. This
may not fit precisely into the standard framework of
quantum error correction [14]. The gauge-invariant sub-
space in which the precursors act is not a standard code
subspace, in that not all states represent distinct messages:
it also includes error degrees of freedom from the one-site
gauge-invariant operators [15].

Free-field precursors.—Now let us apply these lessons
to a continuum model of precursors. Essentially, this is an
infinite-site version of the preceding example. We will take
the CFT to be a free massless scalar ϕi in two dimensions;
this will not have a fully local holographic dual, but—at
least at the level of the two-point function—it provides a
good model [16,17]. The operator ϕ2 has dimension zero,
so is dual to a massless AdS3 scalar Φðt; ρ; θÞ.
By the usual precursor construction [6–10], one uses

bulk equations of motion to express Φðt; ρ; θÞ in terms of
the CFT field ϕ2 smeared over space and time, then uses
CFT equations of motion to evolve this to an operator at a
single time. We will work in the large-N limit, expanding Φ
in terms of bulk creation operators b†Δl for the normal
modes jΔl, where Δ; l are the global energy and the angular
momentum:

Φðt; ρ; θÞ ¼
X

Δl
jΔlðρ; θÞbΔlðtÞ þ H:c: ð6Þ

Taking the boundary limit of Φ, we find that bΔl is the
Fourier transform over the space and time of ϕ2. Expanding
ϕ in modes gives the precursor

bΔl ¼
1
ffiffiffiffi
N

p αΔþ ~αΔ−
; Δ� ¼ 1

2
ðΔ� lÞ: ð7Þ

Here αm for m positive (negative) is the annihilation
(creation) operator for ϕ for left movers of momentum
m, and similarly for ~αm for right movers (these are
normalized ½αm; αn� ¼ mδmn), so a bulk particle is dual
to a pair of left and right moving boundary “particles.” The
1=

ffiffiffiffi
N

p
normalization is to give the correct Oð1Þ two-point

function. Thus, Eq. (6) expresses the bulk field in terms of
CFT bilinears. The precursor can alternatively be expressed
in position space,

Φðt; ρ; θÞ ¼
Z

dθ0dθ00
1
ffiffiffiffi
N

p ffðρ; θ; θ0; θ00Þϕðt; θ0Þϕðt; θ00Þ

þ gðρ; θ; θ0; θ00Þπðt; θ0Þπðt; θ00Þg: ð8Þ

The integrals (8) run over the full range 0 ≤ θ0, θ00 ≤ 2π
and so determine Φ in terms of CFT operators on a full
Cauchy slice for the CFT. However, it is expected that bulk
physics can be reconstructed in terms of the state on a
smaller region of the CFT, namely, any one whose causal
wedge contains the given bulk point. One can make this
explicit, for example, by separating the CFT into two
halves: each reconstructs a Rindler wedge of the bulk; see
Fig. 2. One can expand the fields in terms of Rindler
modes, in a way analogous to Eq. (6). Using now the
precursor for a Rindler mode, one has the analogous
expression to Eq. (6), but now in terms of the continuous
Rindler energy and momenta ω; k with ω� ¼ ðω� kÞ=2,
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Φðt; ρ; θÞ ¼
Z

∞

−∞

d2ω�ffiffiffiffi
N

p hRωþω−
ðρ; θÞαωþðtÞ ~αω−

ðtÞ: ð9Þ

The ρ; θ are now functions of the AdS-Rindler coordinates,
and hRωþω−

is related to the AdS-Rindler modes [18].
The Rindler Fourier operators αω� (distinguished from

the global CFT αΔ� by their subscript) have support only
within the Rindler patch of the CFT, which is half of the
CFT. On the other hand, the global CFT operators αΔ� or,
equivalently, the functions fðt; ρ; θ; θ0; θ00Þ and
gðt; ρ; θ; θ0; θ00Þ, take values in the full Cauchy slice, so
that bilinears may lie in either half of the CFT, or may
stretch between them. So there appears to be a contradiction
between the forms (6) and (9).
The point is that there is freedom in the choice of

hΔþΔ−
¼ jΔl. This is particularly simple in this large-N

limit where only the two-point functions of gauge-invariant
operators remain. From the form (7), we see that any
additional contribution αΔþ ~αΔ−

, for ΔþΔ− < 0, annihilates
the vacuum in both directions and so makes no contribution
to the two-point function. (Such an operator would be dual
to a bulk mode with Δ < l, which does not exist in global
AdS space.) Therefore, to this order we have the freedom to
shift

hΔþΔ−
ðρ; θÞ → hΔþΔ−

ðρ; θÞ þ λΔþΔ−
ðρ; θÞ ð10Þ

for an arbitrary λΔþΔ−
restricted to ΔþΔ− < 0. In the

Appendix we show explicitly that the Poincaré and
Rindler precursors are equal up to the equivalence (10).
This freedom is well known [9], but in light of the

preceding section we can express it in a new and powerful
way. The generator of gauge transformations is

Lij ¼
X∞

r¼1

2

r
ðα½i−rαj�r þ ~α½i−r ~α

j�
r Þ þ Lij

0 ; ð11Þ

where the last term acts on the zero modes. Then, for Δþ <
0 and Δ− > 0, we have

LijαiΔþ ~α
j
Δ−

¼ αiΔþL
ij ~αjΔ−

þ ð1 − NÞαΔþ ~αΔ−
: ð12Þ

The first term on the right is normal ordered, and thus of
order N, while the second is of order N3=2. Thus, the
freedom (10) is a special case of the freedom (4), a
surprising result. What had seemed to be a somewhat
obscure dynamical freedom is reinterpreted in terms of
gauge invariance. Note, too, that for ΔþΔ− > 0 there is no
normal-ordering constant in LijαiΔþα

j
Δ−
, so these bilinears

are nonvanishing, as we would expect. This interpretation
of the operator identity (10) shows that it is not specific to
the leading large-N behavior, nor to a given vacuum.
In fact, it is not possible for the precursors to commute

exactly with all local operators because they cannot
commute with the Hamiltonian, which is an integral over
Tμν. This corresponds to the need for gravitational dressing
to define the bulk position in a coordinate invariant way
[11–13]. This did not arise in the free-field model because it
is of higher order in 1=N. Also, at higher orders in 1=N
there are other complications. The free-field toy model will
not be local in the bulk below the AdS scale. And, in a
realistic model, the gauge symmetry will be a function of
space as well as time, necessitating Wilson lines in the
precursors; their commutators will enter at next order in
1=N. In the full-fledged duality, precursors can be con-
structed order by order in 1=N around a semiclassical
background [22,23], and by construction the localization
properties noted above will hold in this expansion.
Extension of the construction beyond this expansion is
an interesting topic for the future.
The gravitational dressing can be such that the precursor

fails to commute with local CFToperators at only one point
[24], for example, by working in the Fefferman-Graham
gauge. This may seem like too strong of a requirement to
satisfy, but the precursor construction guarantees it at least
in the 1=N expansion around a semiclassical background. It
is sometimes argued that this would require the precursors
to commute with nonlocal operators as well, because the
latter can be expanded in an infinite series of local
operators. However, taking a commutator does not com-
mute with summing such a series. To see this, consider a
free scalar, where

ϕðt; 0Þ ¼ eiHtϕð0; 0Þe−iHt ¼
X∞

n¼0

tn

n!
∂n
t ϕð0; 0Þ: ð13Þ

The operator πð0; xÞ commutes with every operator on the
right for x ≠ 0, but it only commutes with the operator on

FIG. 2 (color online). A bulk operator (the black dot) can be
represented as a CFT precursor consisting of bilocals (the red arcs
ending with x’s) stretching over the entire boundary. A different
construction represents the bulk operators in the right bulk
Rindler wedge as a precursor with support on only the right
half of the boundary. Thus, bilocals localized on the left half of
the CFT, as well as bilocals stretching from the left to the right
half, can be removed from the precursor. This is due to the
additional freedom that comes with considering the action of the
precursors only on gauge-invariant states.
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the left for jxj > jtj. It should be noted that taking a
commutator also does not commute with the operator
product expansion, nor with taking the continuum limit
of a lattice theory. The point is that a commutator is the
zero-time limit of a difference of time orderings, and this
limit need not commute with the others.
Conclusion.—Dualities only act on gauge-invariant

quantities, so the role of gauge symmetry is often deem-
phasized. However, our work suggests a deep connection
between gauge invariance in the boundary theory and the
emergence of the dual spacetime, which deserves further
exploration. This connection shows up in the natural error
correction that allows for the localization of bulk informa-
tion in different regions, and which seems to capture the
gauge-gravity structure more precisely than the standard
error correction schemes. This is seen both in the three-site
model and in the continuum precursors. The introduction of
gauge symmetries into quantum information theory may be
interesting to explore for other reasons as well.

We thank Ahmed Almheiri, Xi Dong, and Daniel Harlow
for the useful discussions, and for their comments on the
manuscript. This work is supported by NSF Grants
No. PHY11-25915 and No. PHY13-16748.

APPENDIX

Here, we show at leading order inN the operator equality
of the Rindler and Poincaré precursors, up to pure gauge
terms. We use the Poincaré description in place of the
global description of the main text for ease of notation.
Let bωk ¼ αωþ ~αω−

=
ffiffiffiffi
N

p
denote the bulk annihilation

operator for a Rindler mode with frequency ω and
momentum k. We do a Bogoliubov transformation to the
Minkowski mode operators

αω ¼
Z

dν
2π

Γωναν: ðA1Þ

(Our notation is such that Γων includes both the positive and
the negative frequency Bogoliubov coefficient, depending
on whether ν is positive or negative.) We distinguish the
Minkowski modes by their arguments, ν; κ. Then,

bωk ¼
1
ffiffiffiffi
N

p
ZZ

∞

−∞

dνþdν−
ð2πÞ2 ΓωþνþΓω−ν−ανþ ~αν− ; ðA2Þ

where ν� ¼ 1
2
ðν� κÞ. Our goal now is to show that this is

equivalent to the precursor found with the Poincaré
smearing function.
The precursor for a Poincaré mode is

bνκ ¼
1
ffiffiffiffi
N

p ανþ ~αν− : ðA3Þ

Unlike the Rindler case, where there are evanescent modes
with jωj < jkj [20], the Minkowski modes are restricted to

jνj > jκj, or νþν− > 0. We want to express our AdS Rindler
mode in terms of Poincaré modes, and we then use the
precursor (A3) for each of the Poincaré modes. To do this,
we need to do a bulk Bogoliubov transformation,

bωk ¼
ZZ

∞

−∞

dνþdν−
ð2πÞ2 θðνþν−ÞΓωk;νκbνκ

¼ 1
ffiffiffiffi
N

p
ZZ

∞

−∞

dνþdν−
ð2πÞ2 θðνþν−ÞΓωk;νκανþ ~αν− : ðA4Þ

In the second line, we have inserted the Poincaré
precursor (A3).
The Rindler and Poincaré precursors (A2) and (A4)

differ in their ranges of integration, with the latter restricted
to νþν− > 0. The smaller momentum range translates into a
larger coordinate range: the Rindler precursor by construc-
tion includes only bilinears with both fields in one Rindler
patch of AdS, while, for the Poincaré precursor, each field
can be in either patch. The equivalence of Eqs. (A2)
and (A4) requires that

Γωk;νκ ¼ ΓωþνþΓω−ν− ; ðA5Þ

for νþν− > 0. The remaining difference, from modes with
νþν− < 0, is then pure gauge to leading order in 1=N. This
was shown in Eq. (12) for the global case; the same
argument applies to Poincaré.
For completeness, we verify Eq. (A5). First, we note that

near the boundary, AdS-Rindler space asymptotes to
Rindler space. To see this, let the AdS-Rindler metric be

ds2 ¼ −ðr2 − 1Þdτ2 þ dr2

r2 − 1
þ r2dx2; ðA6Þ

and consider the coordinate transformation

u¼−
ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p

r
ex−τ; v¼

ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p

r
exþτ; z¼ex=r; ðA7Þ

which yields the Poincaré metric,

ds2 ¼ −dudvþ dz2

z2
: ðA8Þ

Notice that as r → ∞, we have it that

u → −ex−τ; v → exþτ; ðA9Þ

which is the standard transformation between the
Minkowski and Rindler coordinates.
The bulk Bogoliubov coefficients are given by the Klein-

Gordon inner product between an AdS-Rindler mode and a
Poincaré mode. This is usually computed on a spacelike
codimension-one surface. We will instead compute the
Klein-Gordon inner product on a timelike codimension-one
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surface: the boundary of AdS. The boundary limit of the
Poincaré and AdS-Rindler modes is, respectively,

e−iuνþ−ivν− ; ð−uÞiωþviω− ; ðA10Þ

where we have rescaled by the conformal factor zΔ and
have chosen a nonstandard normalization for the modes.
The Bogoliubov coefficients are thus

Γωk;νκ ¼
Z

dudve−iuνþ−ivν−ð−uÞiωþviω−

¼ Γωþ;νþΓω−;ν− ; ðA11Þ

confirming the needed relation (A5) between the AdS-
Rindler-Poincaré Bogoliubov coefficients and the boun-
dary Rindler-Minkowski Bogoliubov coefficients.
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