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The security of device-independent (DI) quantum key distribution (QKD) protocols relies on the
violation of Bell inequalities. As such, their security can be established based on minimal assumptions
about the devices, but their implementation necessarily requires the distribution of entangled states. In a
setting with fully trusted devices, any entanglement-based protocol is essentially equivalent to a
corresponding prepare-and-measure protocol. This correspondence, however, is not generally valid in
the DI setting unless one makes extra assumptions about the devices. Here we prove that a known tight
lower bound on the min entropy in terms of the Clauser-Horne-Shimony-Holt Bell correlator, which has
featured in a number of entanglement-based DI QKD security proofs, also holds in a prepare-and-measure
setting, subject only to the assumption that the source is limited to a two-dimensional Hilbert space.
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The security of quantum key distribution (QKD) rests on
tradeoffs inherent to quantum physics, such as the impos-
sibility of state cloning, the measurement-disturbance
tradeoff, or the monogamy of entanglement. Similarly,
the security of device-independent (DI) QKD [1–3], which
can be established with minimal assumptions about the
internal functioning of the devices, is based on a funda-
mental tradeoff between the violation of Bell inequalities
and the unpredictability of quantum measurements. The
simplest setting in which this tradeoff can be stated involves
two separate parties, Alice and Bob, sharing two subsys-
tems in an entangled state on which they perform, respec-
tively, one of two measurements x; y ∈ f0; 1g yielding
one of two outcomes a; b ∈ f0; 1g. In this setting, the
expectation value

S ¼
X
abxy

ð−1ÞaþbþxyPðabjxyÞ ð1Þ

of the Clauser-Horne-Shimony-Holt (CHSH) Bell correla-
tor [4], where PðabjxyÞ denotes the joint probabilities
for outcomes a; b given measurements x; y, implies the
fundamental lower bound

HminðAjEÞ ≥ 1 − log2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − S2=4

q �
ð2Þ

on the min entropy HminðAjEÞ of Alice’s outcome con-
ditioned on one of Alice’s inputs (say, x ¼ 0) and the
quantum side information E of any potential adversary.
This relation is tight and is attained with equality with the
optimal attack described in Ref. [3].
Contrarily to other tradeoffs used in standard QKD,

which assume some level of trust and characterization of
the quantum systems, the bound (2) is device independent
in the sense that it holds for any quantum state ρABE and
measurement operators fMajxg and fMbjyg characterizing

Alice’s and Bob’s devices. The relation (2) was first derived
in the context of DI-randomness certification [5] and has
since featured as an ingredient in a number of DI QKD
security proofs [6–8].
Since they are based on the violation of Bell inequalities,

DI QKD protocols are entanglement-based (EB) protocols.
Indeed, in the DI setting, entanglement is necessary to
guarantee security with a minimal set of assumptions on the
devices [9]. Implementations of traditional (non-DI) QKD
protocols, such as BB84 [10], are, however, usually of
the prepare-and-measure (PM) type. In a PM protocol,
Alice uses a source to prepare certain states which are
then transmitted through a quantum channel to Bob who
performs measurements on them. PM schemes have the
practical advantage that they do not require the manipu-
lation of entanglement. For this same reason, however,
they cannot be fully DI. Recent works have nevertheless
considered the possibility of PM QKD schemes that are at
least partially DI [11,12].
In traditional QKD, a famous argument establishes

an equivalence between the security of PM and EB
protocols [13]. In the BB84 protocol, for instance, Alice
could prepare the four BB84 states by preparing a Φþ Bell
state ðj0iAj0iA0 þ j1iAj1iA0 Þ= ffiffiffi

2
p

(in some Hilbert space
HA ⊗ HA0) in her lab and measuring either in the com-
putational (fj0iA; j1iAg) basis or in the Hadamard
(fjþiA; j−iAg) basis in HA and transmitting the projected
state in HA0 to Bob. Since the security can only be reduced
if the Φþ state is replaced by a state jψiABE chosen by an
adversary (Eve) and shared between Alice, Bob, and Eve
(the situation considered in EB security proofs), a security
proof of the EB version of the BB84 protocol automatically
implies the security of the PM version.
In the DI setting one can similarly associate a corre-

sponding PM scheme to any EB scheme. In particular, one

PRL 115, 150501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

9 OCTOBER 2015

0031-9007=15=115(15)=150501(5) 150501-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.150501
http://dx.doi.org/10.1103/PhysRevLett.115.150501
http://dx.doi.org/10.1103/PhysRevLett.115.150501
http://dx.doi.org/10.1103/PhysRevLett.115.150501


can consider a PM version of the above CHSH scenario, as
illustrated in Fig. 1. In this PM version, Alice possesses a
source which can emit one of four different quantum states,
noted ρ, ρ0, σ, and σ0, depending on a respective choice
of input ðx; aÞ ¼ ð0; 0Þ, (0,1), (1,0), and (1,1). Alice
randomly chooses x ∈ f0; 1g (not necessarily equiprob-
ably) and chooses a ∈ f0; 1g randomly and equiprobably
and attempts to transmit the corresponding state to Bob,
who may perform one of two binary-outcome measure-
ments on them (indexed by the input y ∈ f0; 1g and output
b ∈ f0; 1g). We can then define

S ¼ 1

2

X
abxy

ð−1ÞaþbþxyPðbjaxyÞ ð3Þ

as the PM analogue of the CHSH correlator (1).
In a traditional (non-DI) setting, the equivalence between

the EB and PM scenarios would imply that the bound (2) on
Alice’s randomness as a function of the CHSH correlator
also holds in the PM version. In a DI setting, however, this
equivalence is not immediate at all. First, the PM version
cannot be fully DI (because the source could simply
transmit Alice’s choice of input classically). The security
of a PM version will thus depend on some minimal
assumption about the source. One possibility is to assume
a dimension bound on one or more of the devices; such
semi-DI PM schemes were proposed in Ref. [11]. Second,
states prepared by measurements on half of an entangled
pair satisfy a constraint called basis independence: if a set
fρxg of states is prepared with associated probabilities
fpxg by performing a measurement on half an entangled
pair, the average state

P
xpxρx is independent of the

measurement used to prepare it (a version of the no-
signaling principle). The basis-independence constraint,
however, need not be satisfied, and is actually explicitly
relaxed, in the PM setting.
We show here that the fundamental bound on Alice’s min

entropy (2) nevertheless still holds in a semi-DI setting,
with the PM version of the CHSH correlator (3) used in
place of Eq. (1). Such a result can then be used to bring the
semi-DI setting (for which security proofs are lacking)
closer in line to known security results for DI QKD. In

particular, the conditional min entropy can, for instance, be
used to lower bound the Devetak-Winter key rate [14] in
order to establish the security against collective attacks of a
semi-DI QKD protocol based on the estimation of the
CHSH correlator (3).
Dimension assumption.—Let us start by making precise

the assumption that we need to derive Eq. (2) in the
PM setting. During the transmission from Alice to Bob, an
adversary may perform an arbitrary unitary operation on
the states sent by Alice, with the intent of gaining some
information about them. (More general quantum operations
can be made unitary by enlarging the adversary’s Hilbert
space, according to Stinespring’s dilation theorem.)
Following this unitary attack, the emitted state ρx;a is
now shared between Bob and Eve [15], i.e., acts on a
Hilbert space HB ⊗ HE. We make the assumption that the
two differences ρ − ρ0 and σ − σ0 between the source states
(after the unitary attack) share their support on a common
two-dimensional subspace HA of HB ⊗ HE. We refer to
this condition as the qubit source assumption. We will later
discuss the physical implications of this assumption; for
now we simply take it as a mathematical condition satisfied
by the states prepared by Alice’s box.
A simple example illustrates the necessity of the qubit

source assumption. Specifically, if Alice’s source prepares
pure states ρx;a ¼ jψx;aihψx;aj, which are duplicate copies
of the BB84 states,

jψ00i ¼ j0iBj0iE; jψ01i ¼ j1iBj1iE; ð4Þ
jψ10i ¼ jþiBjþiE; jψ11i ¼ j−iBj−iE; ð5Þ

in which j0i and j1i are orthonormal and j�i ¼
1ffiffi
2

p ½j0i � j1i�, the maximal value S ¼ 2
ffiffiffi
2

p
can be attained

while Eve always acquires exactly the same state as Bob.
These states are not linearly independent (one can readily
verify that j0ij0i þ j1ij1i ¼ jþijþi þ j−ij−i) and span a
three-dimensional Hilbert space, from which we see that
the security of the semi-DI scenario is fully compromised
if the qubit source assumption is not satisfied.
Min entropy and Eve’s distinguishability.—To prove the

bound (2), let us first note that if the input a is chosen
equiprobably, its min entropy, conditioned on the case
x ¼ 0 and on Eve’s quantum side information, is a function
of the classical-quantum state

τAE ¼ 1

2
j0ih0j ⊗ ρE þ 1

2
j1ih1j ⊗ ρ0E; ð6Þ

in which ρE and ρ0E are Eve’s marginals of the states ρ and
ρ0 after some given unitary attack (in the rest of this article,
subscripts indicate partial tracing in the obvious way, e.g.,
ρB ¼ TrE½ρ�). Evaluated on Eq. (6), the min entropy can be
expressed [16,17] as

HminðAjEÞ ¼ 1 − log2(1þDðρE; ρ0EÞÞ; ð7Þ

FIG. 1 (color online). Semi-device-independent scenario with
the prepare-and-measure CHSH estimation. Alice’s source (SA)
can emit one of four different qubit states ρx;a ∈ fρ; ρ0; σ; σ0g
depending on a choice of input ðx; aÞ ∈ f0; 1g2. Bob’s meas-
urement device (MB) performs one of two measurements
depending on a choice of input y ∈ f0; 1g, yielding an outcome
b ∈ f0; 1g.
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with the trace distance between ρE and ρ0E defined
by DðρE; ρ0EÞ ¼ 1

2
∥ρE − ρ0E∥1, where ∥A∥1 ¼ Tr½

ffiffiffiffiffiffiffiffiffi
A†A

p
�

denotes the trace norm of an operator A. We will obtain
the main result (2) by showing that the trace distance
appearing in Eq. (7) is upper bounded by

DðρE; ρ0EÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − S2=4

q
ð8Þ

in terms of S.
Outline of proof.—We now outline the derivation of

Eq. (8). The lengthier and more pedestrian parts of the
proof are given in the Supplemental Material [18].
Let us first introduce operators Z and X defined such that

ρ − ρ0 ¼ αZ; ð9Þ

σ − σ0 ¼ βX; ð10Þ

with α ¼ 1
2
∥ρ − ρ0∥1 and β ¼ 1

2
∥σ − σ0∥1 such that the

(traceless qubit) operators Z and X satisfy 1
2
∥Z∥1 ¼

1
2
∥X∥1 ¼ 1. Then, in terms of these operators, the CHSH

expectation value (3) can be expressed as

S ¼ 1

2
Tr½UBðαZB þ βXBÞ þ VBðαZB − βXBÞ�; ð11Þ

where UB ¼ P
bð−1ÞbMbjy¼0 and VB ¼ P

bð−1ÞbMbjy¼1

are Hermitian unitary operators acting onHB describing the
observables corresponding to the (without loss of general-
ity, projective) measurements y ¼ 0 and y ¼ 1.
A general result for any pair of Hermitian unitaries is that

they admit a common block diagonalization in blocks of
dimension no more than 2. We can thus set

UB ¼ ⨁
k
Uk

B; VB ¼ ⨁
k
Vk
B; ð12Þ

in which Uk
B and Vk

B are still Hermitian and unitary and of
dimension at most 2, ∀k (the Jordan lemma [19], see
Lemma 2 of Ref. [9] for a short proof). This reduces the
problem to considering qubit subspaces on Bob’s side.
For each subspace k, we can define the corresponding
contribution to S by

Sk ¼
1

2
αTr½ðUk

B þ Vk
BÞZB� þ

1

2
βTr½ðUk

B − Vk
BÞXB�; ð13Þ

with
P

kSk ¼ S. Similarly, we define a probabilistic weight
for each subspace k by

pk ¼
1

2
Tr½1kBIB�; ð14Þ

with
P

kpk ¼ 1, defined in terms of the projection operator
1kB on the kth subspace (satisfying 1kB ¼ ðUk

BÞ2 ¼ ðVk
BÞ2)

and the partial trace IB ¼ TrE½I � of the identity on the
space of source states (satisfying I ¼ Z2 ¼ X2).

We now introduce an orthonormal basis fjyi; jy0ig of
the space of source states chosen such that Y ¼ jyihyj −
jy0ihy0j is orthogonal to the operators Z and X, defined by
Eqs. (9) and (10), on the Bloch sphere. In this basis, in an
appropriate phase convention, Z and X can be expressed as

Z ¼ eiðφ=2Þjyihy0j þ e−iðφ=2Þjy0ihyj; ð15Þ

X ¼ e−iðφ=2Þjyihy0j þ eiðφ=2Þjy0ihyj; ð16Þ

for some (a priori unknown) angle φ, while the source
space identity operator I takes the expression

I ¼ jyihyj þ jy0ihy0j: ð17Þ
One can readily verify that fZ; Yg ¼ fX; Yg ¼ 0, that
½Z; X� ¼ 2i sinðφÞY, and that fZ;Xg ¼ cosðφÞI . An
important step in the derivation of the trace-distance bound
(8) consists in turning the value of S into a constraint on
the part YB of the operator Y accessible to Bob [20].
Specifically, in each subspace k defined by the block
diagonalization (12), we prove in Supplemental Material
A [18] that there exists a Hermitian unitary operator Wk

B
with the property that

α
1

2
Tr½Wk

BYB� ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2k=4 − p2

k

q
; ð18Þ

where Sk and pk are as defined in Eqs. (13) and (14).
Equation (18) holds regardless of the value of β appearing
in Eq. (13) and of φ in Eqs. (15) and (16). Note that α can
also be eliminated using that 1

2
Tr½Wk

BYB� ≥ α 1
2
Tr½Wk

BYB�.
In order to obtain the upper bound (8) on DðρE; ρ0EÞ, we

also derive a tradeoff between the quantity 1
2
Tr½Wk

BYB�,
appearing in Eq. (18), and the distinguishability of Eve’s
states. Specifically, we prove in Supplemental Material B
[18] that, for any Hermitian unitary UE acting on HE, the
inequality

1

4
Tr½Wk

BYB�2 þ
1

4
Tr½ð1kB ⊗ UEÞZ�2 ≤ p2

k ð19Þ

holds in each subspace k.
We obtain Eq. (8) by taking for UE in Eq. (19) a

Hermitian unitary such that 1
2
Tr½UEZE� ¼ 1

2
∥ZE∥1 [21].

Because DðρE; ρ0EÞ ¼ α 1
2
∥ZE∥1 ≤ 1

2
∥ZE∥1, the trace dis-

tance is upper bounded by

DðρE; ρ0EÞ ≤
X
k

1

2
Tr½ð1kB ⊗ UEÞZ�: ð20Þ

Using Eqs. (18) and (19) and omitting α, we have

1

2
Tr½ð1kB ⊗ UEÞZ� ≤ pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ðSk=pkÞ2=4

q
; ð21Þ

and substituting Eq. (21) into Eq. (20) and using that the
function S ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − S2=4

p
is concave, we finally obtain
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DðρE; ρ0EÞ ≤
X
k

1

2
Tr½ð1kB ⊗ UEÞZ�

≤
X
k

pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ðSk=pkÞ2=4

q

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

�X
k

Sk

�
2

=4

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − S2=4

q
: ð22Þ

Combining with the expression (7) for the min entropy, we
obtain Eq. (2).
As with its EB counterpart, Eq. (8) and the resulting

min-entropy bound are tight and are attained with a PM
version of the optimal attack originally given in Ref. [3]; for
completeness we have included a description of this attack
in Supplemental Material C [18].
Discussion of the qubit assumption.—Having proven our

main result, let us now discuss the qubit source assumption
in more detail. Note first that Alice’s “preparation” device
may not in general actually prepare a new state from
scratch, but instead implement a transformation on a
preexisting qubit stored in her box, which could be
entangled with Eve’s system prior to the protocol. The
presence of such prior entanglement between Alice’s
device and Eve may completely break the security of a
PM scheme, as noted in Ref. [11]. However, since our qubit
assumption is formulated in the total space HB ⊗ HE
including Eve’s Hilbert space, it naturally limits the amount
of potential prior entanglement between Alice and Eve (or
Alice and Bob) and thus a nice mathematical feature of our
formulation is that we do not need to state this limitation on
prior entanglement as a separate, additional assumption.
On the other hand, since our qubit assumption is

formulated in the space HB ⊗ HE after Eve’s attack, it
may not be possible to practically verify this assumption in
a cryptographic setting (since Alice and Bob do not have
access to Eve’s system). Note, however, that a sufficient
condition for our assumption to be satisfied is that (i) there
exists no prior entanglement between Alice and Eve or Bob
(e.g., Alice’s preparation box has no quantum memory),
and (ii) the states sent by Alice’s box, before going through
the channel and suffering Eve’s (without loss of generality,
unitary) attack, are such that ρ − ρ0 and σ − σ0 have support
in the same two-dimensional subspace. Under these
conditions, the states ρ − ρ0 and σ − σ0 after Eve’s unitary
attack will still share the same two-dimensional support
and thus our qubit source assumption will be satisfied.
However, the condition that we use to derive the min-
entropy bound (2) is formally weaker than the combination
of (i) and (ii) as these only represent sufficient conditions
for our assumption to be satisfied.
Another nice feature of our formulation is that the qubit

assumption refers only to the differences ρ − ρ0 and σ − σ0

and not directly to the states ρx;a themselves, which may
live in a higher dimensional Hilbert space. For instance,
in an optical implementation, each “qubit” may be a
qubit encoded in the polarization degree of freedom of a
single photon, but may also possess a vacuum component
and thus formally be a three-level system of the form
ρx;a ¼ pj0ih0j þ ð1 − pÞ~ρa;x, where ~ρa;x is the one-photon
polarized qubit part. Still, the differences ρ − ρ0 and σ − σ0
only involve the genuine qubit parts and thus satisfy our
qubit source assumption.
Finally, let us remark that our assumption can immedi-

ately be weakened in two ways. First, using convexity
arguments, it is easy to see that the min-entropy bound (2)
still holds if Alice’s, Bob’s, and Eve’s systems share prior
classical randomness, provided that for any value λ of the
shared randomness, the differences ρλ − ρ0λ and σλ − σ0λ
satisfy the qubit assumption. Again, it may not be possible
to practically verify this assumption in the most general
DI setting (as Alice and Bob will not have access to the
individual values of the shared randomness if their devices
are uncharacterized). However, a sufficient condition for
this assumption to be satisfied is if each of the averaged
states ρx;a ¼

P
λqλρx;a;λ are contained in the same qubit

space, a condition which does not require any knowledge
of the shared randomness.
Second, we point out that the bound on the min entropy

is also robust with respect to the qubit assumption; i.e.,
this assumption need only be approximately verified.
Specifically, suppose that, instead of assuming Eqs. (9)
and (10), we assume that there exist traceless two-
dimensional unit operators α ~Z and β ~X such that
1
2
∥ðρ − ρ0Þ − α ~Z∥1 ≤ ε and 1

2
∥ðσ − σ0Þ − β ~X∥1 ≤ ε. Then

it is easy to see that DðρE; ρ0EÞ ≤ 1
2
∥α ~ZE∥1 þ ε and that the

CHSH expectation value computed with α ~Z and β ~X cannot
differ from S by more than 4ε. Small deviations from the
qubit source assumption can thus be tolerated, with a bound
on the min entropy no worse than

HminðAjEÞ≥ 1− log2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− ðS− 4εÞ2=4

q
þ ε

�
: ð23Þ

Conclusion.—We gave a proof that the fundamental
lower bound (2) on the randomness of Alice’s outcomes
as a function of the CHSH expression, originally derived in
the context of device-independent QKD and randomness
certification, still holds in a PM setting with a qubit
assumption. Though the equivalence between EB and
PM schemes in standard QKD may a priori suggest that
this should naturally be the case, this is not at all immediate
as this equivalence breaks in a DI setting. Indeed, the
techniques that we have used here to establish the lower
bound (2) in the PM setting are quite different from the
ones used to establish the EB version of this bound.
This fundamental lower bound (2) can now, in principle,

be used as a building block to prove the security of semi-DI
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QKD protocols, in the sameway that it was used in the fully
DI setting in Refs. [6–8].
We remark that in the EB scenario, an analogous tight

bound for the Holevo quantity (or, equivalently, the condi-
tional von Neumann entropy) instead of the min entropy had
earlier been presented in Ref. [3] as part of a security proof
against collective attacks. The conditional von Neumann
entropy can likewise, in principle, be bounded in the PM
scenario. A partial result for the von Neumann entropy,
restricted to the case where Bob’s measurements are addi-
tionally assumed to be two-dimensional, is given inRef. [22].
Finally, having shown that our min-entropy bound

holds for Alice’s system conditioned on Eve, it would
be interesting to investigate whether a similar result holds
for the min-entropy HminðBjEÞ associated with Bob’s
measurement outcome. In particular, a version of this result
conditioned on just one of Alice’s state preparations would
apply immediately to the problem of randomness certifi-
cation [5,23–25], which has similarly been investigated in
PM scenarios [26,27].
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