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The notion of (non)contextuality pertains to sets of properties measured one subset (context) at a time.
We extend this notion to include so-called inconsistently connected systems, in which the measurements
of a given property in different contexts may have different distributions, due to contextual biases in
experimental design or physical interactions (signaling): a system of measurements has a maximally
noncontextual description if they can be imposed a joint distribution on in which the measurements of any
one property in different contexts are equal to each other with the maximal probability allowed by their
different distributions. We derive necessary and sufficient conditions for the existence of such a description
in a broad class of systems including Klyachko-Can-Binicioğlu-Shumvosky-type (KCBS), EPR-Bell-type,
and Leggett-Garg-type systems. Because these conditions allow for inconsistent connectedness, they are
applicable to real experiments. We illustrate this by analyzing an experiment by Lapkiewicz and colleagues
aimed at testing contextuality in a KCBS-type system.
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The notion of (non)contextuality in quantum mechanics
(QM) relates the outcome of a measurement of a physical
property q to the choice of properties q0; q00;… co-measured
with q [1]. The set of co-measured properties q; q0; q00;…
forms a measurement context for each of its members. The
traditional understandingof a contextualQMsystem is that if
the measurement of each property q in it is represented by a
random variable Rq, then the random variables representing
all properties in the system do not have a joint distribution.
We use here a different formulation, which, although

formally equivalent, lends itself to more productive develop-
ment [2–7]. We label all measurements contextually: this
means that a property q is represented by different random
variablesRc

q dependingonthecontextc ¼ fq; q0; q00;…g.We
say that the system has a noncontextual description if there
exists a joint distribution of these random variables in which
any twoof them,Rc1

q andRc2
q , representing thesamepropertyq

in different contexts, are equal with probability 1. If no such
description exists we say that the system is contextual. Note
that the existence of a joint distribution of several random
variables is equivalent to the possibility of presenting them as
functions of a single, “hidden” variable λ [2,8–11].
This formulation applies to systems in which the random

variables Rc1
q ; R

c2
q ;… representing a given property in

different contexts always have the same distribution. We
call such systems consistently connected, because we call
the set of all such variables Rc1

q ; R
c2
q ;… for a given q a

connection. If the properties forming any given context are
space-time separated, consistent connectedness coincides
with the no-signaling condition [12]. The central aim of this
Letter is to extend the notion of contextuality to the cases of
inconsistent connectedness, where the measurements of a
given property may have different distributions in different

contexts. This may happen due to a contextually biased
measurement design or due to physical influences exerted
on Rc

q by elements of context c other than q.
The criterion of (necessary and sufficient conditions for)

contextualitywederive below is formulated for inconsistently
connected systems, treating consistent connectedness as a
special case. This makes it applicable to real experimental
data. For example, the experiment in Ref. [13] testing the
Klyachko-Can-Binicioğlu-Shumvosky (KCBS) inequality
[14] exhibits inconsistent connectedness, necessitating a
sophisticated work-around to establish contextuality (see
Refs. [15,16]). Below, we apply our extended notion to the
same data to establish contextuality directly, with no work-
arounds.Another example isLeggett-Garg (LG)systems[17],
where our approach allows for the possibility that later mea-
surements may be affected by previous settings (“signaling in
time,” [18,19]). Finally, in EPR-Bell-type systems [20,21] our
approach allows for the possibility that Alice’s measurements
are affected by Bob’s settings [22] when they are timelike
separated, and evenwith spacelike separation, the same effect
can be caused by systematic errors [23].
Earlier treatments.—In the Kochen-Specker theorem [1]

or its variants [24,25], contexts are chosen so that each
property enters inmore than one context, and in each context,
according to QM, one and only one of the measurements
has a nonzero value. The proof of contextuality, using our
language, consists of showing that the variables Rc

q cannot
be jointly assigned values consistent with this constraint so
that all the variables representing the same property q are
assigned the same value. An experimental test of contex-
tuality here consists of simply showing that the observables
it specifies can be measured in the contexts it specifies, and
that the QM constraint in question is satisfied.
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There has been recent work translating the value assign-
ment proofs into probabilistic inequalities (sometimes
called Kochen-Specker inequalities), giving necessary con-
ditions for noncontextuality [2,26]. Inequalities that do not
use value-assignment restrictions but only the assumption
of noncontextuality are known as noncontextuality inequal-
ities [14,27,28]. Bell inequalities [9,20,21,29,30] and LG
inequalities [8,17] are also established through noncontex-
tuality [31], motivated by specific physical considerations
(locality and noninvasive measurement, respectively).
An extension of the notion of (non)contextuality that allows

for inconsistent connectedness was suggested in Refs. [2,32].
However, the error probability proposed in those papers as a
measure of context-dependent change in a random variable
cannot be measured experimentally. The suggestion in both
Refs. [2,32] is to estimate the accuracyof themeasurement and
from that argue for a particular value of the error probability.
For example, Ref. [32] uses the quantum description of the
system for the estimate (quantum tomography), but there is no
clear reason why or how the quantum error model would be
related to that of the proposed noncontextual description.
Anoncontextuality test shouldnotmix the twodescriptions, as
it attempts to show their fundamental differences.
In this Letter we generalize the definition of contextual-

ity in a different manner, to allow for inconsistent con-
nectedness while only using directly measurable quantities.
We derive a criterion of (non)contextuality for a broad class
of systems that includes as special cases the systems
intensively studied in the recent literature on contextuality:
KCBS, EPR-Bell, and LG systems [14,33,34], with their
inconsistently connected versions [35,36].
Basic concepts and definitions.—We begin by formal-

izing the notation and terminology. Consider a finite set
of distinct physical properties Q ¼ fq1;…; qng. These
properties are measured in subsets of Q called contexts,
c1;…; cm. Let C denote the set of all contexts, and Cq the
set of all contexts containing a given property q.
The result of measuring property q in context c is a

random variable Rc
q. The result of jointly measuring all

properties within a given context c ∈ C is a set of jointly
distributed random variables Rc ¼ fRc

q∶ q ∈ cg.
No two random variables in different contexts, Rc

q; Rc0
q0 ,

c ≠ c0, are jointly distributed, they are stochastically
unrelated [6,7]. The set of random variables representing
the same property q in different contexts is called a
connection (for q). So the elements of a connection
fRc

q∶ c ∈ Cqg are pairwise stochastically unrelated. If all
random variables within each connection are identically
distributed, the system is called consistently connected;
if it is not necessarily so, it is inconsistently connected.
Consistent connectedness is also known in QM as the
Gleason property [37], outside physics as marginal selec-
tivity [6], and Ref. [38] lists some dozen names for the
same notion; a recent addition to the list is the no-
disturbance principle [39,40].

The set Q of all properties together with the set C of all
contexts and the set fRc∶ c ∈ Cg of all sets of random
variables representing contexts is referred to as a system.
In the systems we consider here the set of properties q is
finite (whence the set of contexts c is finite too), and each
random variable has a finite number of possible values
(e.g., spin measurement outcomes).
We introduce next the notion of a (probabilistic) cou-

pling of all the random variables Rc
q in our system [41].

Intuitively, this is simply a joint distribution imposed, or
“forced” on all of them (recall that they include stochas-
tically unrelated variables from different contexts).
Formally, a coupling of fRc

q∶ q ∈ c ∈ Cg is any jointly
distributed set of random variables S ¼ fScq∶ q ∈ c ∈ Cg
such that, for every c ∈ C, fScq∶ q ∈ cg ∼ fRc

q∶ q ∈ cg,
where ∼ stands for “has the same (joint) distribution as.”
One can also speak of a coupling for any subset of the
random variables Rc

q. Thus, fixing a property q, a coupling
of a connection fRc

q∶ c ∈ Cqg is any jointly distributed
fXc

q∶ c ∈ Cqg such that Xc
q ∼ Rc

q for all contexts c ∈ Cq.
Note that if S is a coupling of all Rc

q, then every marginal
(jointly distributed subset) fScq∶ c ∈ Cqg of S is a coupling
of the corresponding connection fRc

q∶ c ∈ Cqg.
Expressed in this language, the traditional approach is to

consider a system noncontextual if there is a coupling S of
the random variables Rc

q, such that for every property q the
random variables in fScq∶ c ∈ Cqg are equal to each other
with probability 1. That is, for every possible coupling S of
the random variables Rc

q and every property q we consider
the marginal fScq∶ c ∈ Cqg corresponding to a connection
fRc

q∶ c ∈ Cqg, and we compute

Pr ½Scq1q ¼ � � � ¼ S
cqnq
q �; fcq1;…; cqnqg ¼ Cq: ð1Þ

If there exists a coupling S for which this probability equals
1 for all q, this S provides a noncontextual description for
our system. Otherwise, if in every possible coupling S the
probability in question is less than 1 for some properties q,
the system is considered contextual.
This understanding, however, only involves consistently

connected systems. As mentioned in the introduction, a
system may be inconsistently connected due to syste-
matic biases or interactions (such as signaling in time in
LG systems). If for some q and some contexts c; c0 ∈ Cq,
the distribution of Rc

q and Rc0
q are not the same, then

Pr½Scq ¼ Sc
0
q � cannot equal 1 in any coupling S. There would

be nothing wrong if one chose to say that any such
inconsistently connected system is therefore contextual,
but contextuality due to systematic measurement errors or
signaling is clearly a special, trivial kind of contextuality.
One should be interested in whether the system exhibits any
contextuality that is not reducible to (or explainable by) the
factors that make distributions of random variables within a
connection different. For systems in general, therefore, we
propose a different definition.
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Definition 1.—A system has a maximally noncontextual
description if there is a coupling S of the random variables
Rc
q, such that for any q the random variables fScq∶ c ∈ Cqg

in S are equal to each other with the maximum probability
allowed by the individual distributions of Rc

q.
To explain, consider a connection fRc

q∶ c ∈ Cqg in
isolation, and let fXc

q∶ c ∈ Cqg be its coupling. Among
all such couplings there must be maximal ones, those in
which the probability that all variables in fXc

q∶ c ∈ Cqg are
equal to each other is maximal possible, given the distribu-
tions of Xc

q ∼ Rc
q. If a connection consists of two dichotomic

(�1) variables R1
q and R2

q, and fX1
q; X2

qg is its coupling
(i.e., X1

q; X2
q are jointly distributed with hX1

qi ¼ hR1
qi,

hX2
qi ¼ hR2

qi), then by Lemma A3 in the Supplemental
Material [42], the maximal possible expectation hX1

qX2
qi is

1 − jhR1
qi − hR2

qij; a coupling fX1
q; X2

qg with this expect-
ation is maximal. Now take every possible coupling S of
all our random variables Rc

q, consider the marginals
fScq∶c∈Cqg corresponding to connections fRc

q∶ c ∈ Cqg,
and for each of these marginals compute the probability (1).
If there is a coupling S in which this probability equals
its maximal possible value for every q, this S provides a
maximally noncontextual description for our system.
For consistently connected systems Definition 1 reduces
to the traditional understanding: the maximal probability
with which all variables in fXc

q∶ c ∈ Cqg can be equal
to each other is 1 if all these variables are identically
distributed.
Cyclic systems of dichotomic random variables.—We

focus now on systems in which (S1) each context consists
of precisely two distinct properties; (S2) each property
belongs to precisely two distinct contexts; and (S3) each
random variable representing a property is dichotomic (�1).
As shown in Lemma A1 (Supplemental Material [42]), a set
of properties satisfying S1–S2 can be arranged into one or
more distinct cycles q1 → q2 → � � � → qk → q1, in which
any two successive properties form a context. Without loss
of generality we will assume that we deal with a single-cycle
arrangement q1 → q2 → � � � → qn → q1 of all the proper-
ties fq1;…; qng. The number n is referred to as the rank of
the system.
A schematic representation of a cyclic system is shown

in Fig. 1. The LG paradigm exemplifies a cyclic system
of rank n ¼ 3, on labeling the observables q1; q2; q3
measured chronologically. The contexts fq1;q2g;fq2;q3g;
fq3;q1g here are represented by, respectively, pairs ðR1

1;R
1
2Þ;

ðR2
2;R

2
3Þ;ðR3

3;R
3
1Þ with observed joint distributions, whereas

ðR1
1; R

3
1Þ; ðR2

2; R
1
2Þ; ðR3

3; R
2
3Þ are connections for q1; q2; q3,

respectively. The EPR-Bell paradigm exemplifies a cyclic
system of rank n ¼ 4, on labeling the observables q1; q3 for
Alice and q2; q4 for Bob. Cyclic systems of rank n ¼ 5 are
exemplified by the KCBS paradigm, on labeling the vertices
of the KCBS pentagram by q1 → q2 → q3 → q4 → q5.
(Non)contextuality criterion.—For any n, and any

x1;…; xn ∈ R, we define the function

s1ðx1;…; xnÞ ¼ max
ι1;…;ιn∈f−1;1g;

Q
k

ιk¼−1

X

k

ιkxk: ð2Þ

The maximum is taken over all combinations of �1
coefficients ι1;…; ιn containing odd numbers of −1’s.
The following is our main theorem.
Theorem 1.—A cyclic system of rank n > 1 with

dichotomic random variables (see Fig. 1) has a maximally
noncontextual description if and only if

s1ðhRi
iR

i
i⊕1i; 1− jhRi

ii−hRi⊖1
i ij∶i¼1;…;nÞ≤2n−2

ð3Þ
(s1 here having 2n arguments, each entry being taken
with i ¼ 1;…; n).
See the Supplemental Material [42] for the proof. In

Eq. (3), hRi
iR

i
i⊕1i are the quantum correlations observed

within contexts, whereas 1 − jhRi
ii − hRi⊖1

i ij are the maxi-
mal values for the unobservable correlations within the
couplings of connections. If the system is consistently
connected, i.e., hRi

ii ¼ hRi⊖1
i i, then these maximal values

equal 1. By Corollary A10 [42], the criterion (3) then
reduces to the formula

s1ðhRi
iR

i
i⊕1i∶ i ¼ 1;…; nÞ ≤ n − 2; ð4Þ

well known for n ¼ 3 (the LG inequality in the form derived
in Ref. [8]) and for n ¼ 4 (CHSH inequalities [29]). For
n ¼ 5, Eq. (4) contains the KCBS inequality (which by
Corollary A.11 [42] is not only necessary but also sufficient
for the existence of a maximally noncontextual description).
Finally, for any even n ≥ 4, inequality (4) contains the

FIG. 1 (color online). A schematic representation of a cyclic
(single-cycle) system of rank n > 1. The properties q1;…; qn; q1
form a circle, any two successive properties ðqi; qi⊕1Þ form a
context, denoted ci (⊕ is clockwise shift 1↦2↦ � � �↦n↦1). In
a given context ci the random variable representing qi is denoted
Ri
i, and the one representing qi⊕1 is denoted Ri

i⊕1. Each property
qi, therefore, is represented by two random variables: Ri

i (when qi
is measured in context ci) and Ri⊖1

i (when qi is measured in
context ci⊖1). The pair ðRi⊖1

i ; Ri
iÞ is the connection for qi, and the

pair ðRi
i; R

i
i⊕1Þ represents the context ci.
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chained Bell inequalities studied in Refs. [43,44]. It is known
that for n > 4 the chained Bell inequalities are not criteria,
the latter requiring many more inequalities [45–48].
Generally, some of the terms hRi

ii − hRi⊖1
i i in Eq. (3) may

be nonzero.Thus, in anLGsystem (n ¼ 3), if inconsistency is
due to signaling in time [18,19], these may include hR2

2i −
hR1

2i and hR3
3i − hR2

3i but not hR1
1i − hR3

1i, becauseq1 cannot
be influenced by later events. However, hR1

1i − hR3
1i may

be nonzero due to contextual biases in design, if something in
the procedure of measuring q1 is different depending on
whether the next measurement is going to be of q2 or q3.
An application to experimental data.—To illustrate the

applicability of our theory to real experiments, consider the
data from the KCBS experiment of Ref. [13]. The experi-
ment uses a single photon in a quantum overlap of three
optical modes (paths) as an indivisible quantum system.
Readout is performed through single-photon detectors that
terminate the three paths. Context is chosen through
“activation” of transformations, by rotating a wave plate
that precedes each beam splitter to change the behavior
of two out of three paths. Each transformation leaves one
path untouched, which serves as justification for consistent
connectedness of the corresponding measurements, hRi

ii ¼
hRi⊖1

i i, so that the target inequality is Eq. (4) for n ¼ 5.
R1
1 and R5

1 are recorded in different experimental setups
with zero or four polarizing beam splitters “activated.” These
outputs have significantly different distributions: from
Ref. [13] Table 1, hR1

1i ¼ 0.136ð6Þ, hR5
1i ¼ 0.172ð4Þ, and

taking them as means and standard errors of 20 replications,
the standard t test with df ¼ 19 is significant at 0.1%.
Lapkiewicz et al. deal with this by introducing in Eq. (4) a
correction term involving hR1

1R
5
1i. They estimate hR1

1R
5
1i by

identifying R1
1 with R0

1, an output measured in a separate
context and in a special manner: instead of photon detections
it is measured by blocking two paths early in the setup.
While this results in a well-motivated experimental test, the
identification of R0

1 with R
1
1 involves additional assumptions

[15,16]. Furthermore, Lapkiewicz et al. have to discount the
fact that the assumption hRi

ii¼ hRi⊖1
i i can also be challenged

for i ¼ 4: the same t test as above for hR4
4i ¼ 0.122ð4Þ

and hR3
4i ¼ 0.142ð4Þ is significant at 1%. We see that the

traditional approach adopted in Ref. [13] encounters con-
siderable experimental and analytic difficulties due to the
necessity of avoiding inconsistent connectedness.
Our theory allows one to analyze the data directly as

found in the measurement record. It is convenient to do this
by using the inequality

s1ðhRi
iR

i
i⊕1i∶ i ¼ 1;…; nÞ −

Xn

i¼1

jhRi
ii − hRi⊖1

i ij ≤ n − 2;

ð5Þ
which, by Corollary A9 [42], follows from the criterion (3)
[49]. One way of using it is to construct a conservative
100ð1 − αÞ% confidence interval with, say, α ¼ 10−10 for
the left-hand side of Eq. (5) with n ¼ 5 and show that its
lower endpoint exceeds n − 2 ¼ 3. One can, e.g., construct

10 Bonferroni 100ð1 − α=10Þ% confidence intervals for
each of the approximately normally distributed terms
hRi

iR
i
i⊕1i and hRi

ii− hRi⊖1
i i (i¼ 1;…;5), with respective

error terms read or computed from Table 1 of Ref. [13],
and then determine the range of Eq. (5). Treating each
estimated term as the mean of 20 observations, we have
t1−α=10ð19Þ < 14, and so a conservative confidence interval
for each term is given by�14 × standard error. Using these
intervals, we can calculate the conservative 100ð1–10−10Þ%
confidence interval for Eq. (5) as

s1ð hR1
1R

1
2i

zfflfflffl}|fflfflffl{−:805�:028

; hR2
2R

2
3i

zfflfflffl}|fflfflffl{−:804�:042

; hR3
3R

3
4i

zfflfflffl}|fflfflffl{−:709�:042

; hR4
4R

4
5i

zfflfflffl}|fflfflffl{−:810�:028

; hR5
5R

5
1i

zfflfflffl}|fflfflffl{−:766�:028

Þ
− jhR1

1i − hR5
1i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

−:036�:101

j − jhR2
2i − hR1

2i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
−:004�:140

j − jhR3
3i − hR2

3i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
:006�:126

j

− jhR4
4i − hR3

4i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
−:020�:080

j − jhR5
5i − hR4

5i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
−:006�:080

j ¼ ½3.127; 4.062�: ð6Þ

The system is contextual. The conclusion is the same as
in Ref. [13], but we arrive at it by a shorter and more
robust route.
Conclusion.—We have derived a criterion of (non)con-

textuality applicable to cyclic systems of arbitrary ranks.
Even for consistently connected systems this criterion has
not been previously known for ranks n ≥ 5 (KCBS and
higher-rank systems). However, it is the inclusion of
inconsistently connected systems that is of special interest,
because it makes the theory applicable to real experiments.
A “system” is not just a system of properties being
measured, but also a system of measurement procedures
being used, with possible contextual biases and unac-
counted-for interactions. Our analysis opens the possibility
of studying contextuality without attempting to eliminate
these first, whether by statistical analysis or by improved
experimental procedure.
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