
Comment on “Boson Peak in Deeply Cooled Confined
Water: A Possible Way to Explore the Existence of the
Liquid-to-Liquid Transition in Water”

In their Letter, Wang et al. [1] report on an inelastic
neutron scattering (INS) experiment where they describe
the pressure evolution of a low energy (E ∼ 6 meV)
excitation, emerging in confined protonated water only
below 230 K at an exchanged momentum Q ¼ 2.0 Å−1.
Water confinement was used to overcome the unavoidable
crystallization occurring below ∼250 K in bulk water. The
authors report that a similar finding was also obtained in
both bulk (numerical simulations [2]) and confined water at
ambient pressure. They refer to this low temperature
excitation as a boson peak (BP) [3], and relate its
occurrence to the Widom line, concluding that the observed
pressure behavior of the BP reveals the signature of the
high-density liquid (HDL) to the low-density liquid (LDL)
transition proposed [4], though severely questioned [5], for
bulk water. We believe these claims to be unconvincing for
the following reasons.
Comparison with corresponding findings in liquid

water.—The authors not only overlook commenting on
the actual density of confined liquid water [6–9], but they
also neglect to establish any physical relationship with the
well known excitations of coherent or incoherent origin
occurring at similar energies in bulk liquid water. Since the
seminal Raman scattering room temperature studies by
Bolla [10], a mode in the ∼5–7 meV range has indeed been
regularly observed with optical [11–14], numerical [15],
and inelastic x-ray scattering [16–18] and INS techniques
[19,20] over a wide thermodynamic range (0–2 kbar,
250–450 K) in both H2O and D2O (see Fig. 4 in
Ref. [21]). The microscopic nature of such a mode,
underdamped and still well defined at Q ¼ 2.0 Å−1, is
the subject of controversial single-particle [12,22,23] or
collective [21,24] interpretations. Irrespective of its inco-
herent or coherent nature, this evidence is unquestionable
and cannot be ignored. This mode is not easily detectable in
high temperature neutron spectra from H2O because of the
overwhelming quasielastic contribution. However, its pres-
ence always emerges in calculating the hydrogen vibra-
tional density of states, as was done in Ref. [22] at
T ¼ 256 K, and in bulk or confined H2O from 300 K
down to 242 K [25], but not mentioned in Ref. [1]. This
mode, but not the BP, was also observed when investigating
the vibrational dynamics in amorphous ices [26,27].
Moreover, a bulklike excitation not dependent on temper-
ature was observed down to 205 K in an INS measurement
on slightly salty liquid water [28].
Data analysis and treatment.—(i) INS probes at the same

time the coherent and incoherent properties of matter with a
weight given by their respective neutron cross section and
dynamic structure factor. H2O is considered as an incoher-
ent scatterer by reason of the high σinc=σcoh ratio. Yet, this
approximation cannot be uncritically adopted as was done

in Ref. [1] and a proper estimation of the related ratio
SincðQ;ωÞ=ScohðQ;ωÞ at the thermodynamic (P, T) and
kinetic (Q;ω) investigated point should be addressed.
(ii) An arbitrary interpolating metric is adopted to deter-
mine the locus of the BP appearance: the TB parameter is a
clumsy, large-error quantity inherent in the slowing down
of the thermal diffusion. The peak associated with the low
energy—and virtually temperature independent (see Fig. 4
of Ref. [1])—excitation is enhanced by the narrowing of the
quasielastic signal upon lowering the temperature. (iii) The
exact internal pressure existing in such tiny pores is not
directly related to the He applied pressure and is therefore
unknown [29]. As a consequence, the confined water phase
diagram and properties cannot be unconditionally assigned
to those of bulk water. (iv) In order to support the authors’
claims at a less speculative level, the correct BP shape
should be determined by calculating the vibrational density
of states in excess of that of the corresponding crystal-
line phase.
In conclusion, the whole large body of numeric and

experimental investigations on the single particle and
collective properties of liquid water report the presence
of a weakly dispersing excitation in the 5–7 meV range. We
believe that, in order to use the BP as a marker of the HDL
or LDL bulk water phases, the authors should perform a
more complete data treatment and establish a relation, if
any, between the supposed BP peak they observe in a
confined environment and the well established bulk mode
present in a wide portion of the phase diagram at the same
energy.
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