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Recent experiments on the Ba3XSb2O9 family have revealed materials that potentially realize spin- and
spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the
presence of charged X2þ-Sb5þ dumbbells, with two possible orientations. To model the lattice structure, we
consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb
interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, T frz, at
which the simulated structure factor matches well to low-temperature x-ray diffraction data for
Ba3CuSb2O9. At T ¼ T frz we find a complicated “branching” structure of superexchange-linked X2þ

clusters, which form a fractal pattern with fractal dimension df ¼ 1.90. We show that this gives a natural
explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such
dumbbell disorder can promote a spin-orbital resonant state with delocalized orphan spins.
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Recently, there has been an intense search for materials
exhibiting spin-liquid behavior—materials beyond the
“standard model” of condensed matter physics [1]. A
particularly intriguing idea is of a spin-orbital liquid, in
which not only the spin but also the orbital degrees of
freedom remain fluctuating down to low temperature [1–5].
The Ba3XSb2O9 family, with X ¼ Cu [6–16], Ni

[17–21], Co [22–24], Mn [25,26], …, has been shown
to be a promising class of materials to realize spin-liquid
behavior. Ba3CuSb2O9 has been particularly well studied,
and it has been suggested that the spin and orbital degrees
of freedom associated with the Cu2þ ions form a spin-
orbital liquid state [6–16]. In the case of Ba3NiSb2O9, the
pressure-synthesized 6H-B structure has been proposed as
an example of a spin-1 spin-liquid state [17–21].
An important starting point when trying to understand

spin-liquid behavior is knowledge of the lattice structure. In
Ba3CuSb2O9 it has been suggested that the Cu2þ ions form
a short-range honeycomb lattice [7], and theoretical
approaches have therefore concentrated on Cu2þ plaquettes
formed of several hexagons [10,12,15]. On the other hand,
in the 6H-B phase of Ba3NiSb2O9 it has been suggested
that the Ni2þ ions form a triangular lattice [17].
Here we argue that in neither case is this a good starting

point for theoretical investigation, and instead one should
consider a disordered “branch” lattice [see Fig. 1(b)]. The
evidence we present focuses in particular on Ba3CuSb2O9,
but should be applicable to other members of the
Ba3XSb2O9 family. Furthermore, we suggest that this type
of correlated lattice disorder can promote spin-orbital liquid
behavior.
In order to investigate the lattice structure of these

materials, we solve a frustrated model of interacting
X2þ-Sb5þ charged dumbbells [see Fig. 1]. We argue this
is relevant to stoichiometric X ¼ Cu, X ¼ Ni in the

pressure synthesized 6H-B phase and potentially to pres-
sure synthesized X ¼ Mn and X ¼ Co.
The X2þ-Sb5þ dumbbells are surrounded by O2− bio-

ctahedra, and their constituent ions sit on the vertices of
stacked triangular lattice bilayers [7], as shown in Fig. 1(a).
Each dumbbell has two possible orientations with either the
X2þ or Sb5þ on top. Electrostatically, the primary influence
on the orientation of the dumbbells is the orientation of the
other dumbbells—that is to say that the Ba2þ, O2− and

(a) (b)

FIG. 1 (color online). Charged dumbbells on the triangular
lattice. (a) X2þ-Sb5þ dumbbells of length z form a triangular
lattice bilayer. There is an Ising degree of freedom associated to
whether the dumbbell is orientated with X above Sb or vice versa.
The equilibrium distribution of dumbbells can be mapped onto a
charge model, ECoul [Eq. (1)], which at low temperature orders in
a stripe ground state [shown here]. (b) Material realizations of
ECoul [Eq. (1)] fall out of equilibrium at T ¼ T frz, and the lattice
structure can be studied by making simulations at this temper-
ature. A snapshot of a typical lattice structure for X ¼ Cu is
shown, with blue and orange sites denoting different dumbbell
orientations. Superexchange interactions link Cu2þ ions on
dumbbells with the same orientation, and superexchange linked
clusters are shown by blue and orange bonds.
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remaining Sb5þ ions are electrostatically ambivalent as to
the dumbbell orientation.
This leads us to consider a Coulombic charge model,

ECoul ¼
1

2

X

i≠j

qiqj
rij

; ð1Þ

where qi ¼ �1 is a normalized charge, i and j run over the
sites of a bilayer triangular lattice [shown in Fig. 1],
rij ¼ jri − rjj, and the charge distribution is constrained
to have one positive and one negative charge on each
dumbbell. We ignore interaction between dumbbells in
different bilayers, and we provide a justification for this
approximation below.
In order to relate the charge distribution following from

ECoul [Eq. (1)] to the lattice structure of the materials, it is
necessary to understand the synthesis process. This is
typically performed at high temperature (> 1000 °C), and
the crystals are then slowly cooled to room temperature and
below [7,8]. A characteristic time scale tcool can be ascribed
to this cooling process, and this should be compared to tflip,
the characteristic time for dumbbells to reverse their
orientation. Close to the synthesis temperature, we assume
that tflip ≪ tcool, and therefore the dumbbell orientation
remains in thermal equilibrium as T is reduced. As the
crystal is cooled, tflip increases, and there is a temperature,
T frz, below which tflip ≫ tcool. In this regime the dumbbell
dynamics is too slow to equilibrate the system and the
charge distribution is thus frozen in place. The dumbbell
structure for any T < T frz can therefore be understood from
studying the equilibrium dumbbell structure at T ¼ T frz.
The dumbbells in these materials are widely spaced,

and one piece of evidence that they are dynamic at
high temperature comes from the isostructural compound
Ba3IrTi2O9 [27]. Here the Ir-Ti dumbbells exhibit a
markedly different low-temperature structure depending
on whether the material is slowly cooled from the synthesis
temperature (1000 °C) or quenched.
This suggests a twofold strategy for understanding the

lattice structure of these materials. (1) Simulate ECoul
[Eq. (1)] as a function of temperature, and, by comparison
with experimental data, determine the freezing temperature,
T frz. (2) Simulate the model at T frz in order to extract
detailed information about the lattice structure for all
T < T frz.
In order to simulate ECoul [Eq. (1)], it is first mapped

onto an Ising model on the triangular lattice using Ewald
summation [28]. This leads to,

ECoul ¼ E0 þ
1

2

X

i;j

ψ ijðzÞσiσj; ð2Þ

where σi ¼ �1 is an Ising spin, i runs over the sites of a
triangular lattice, and ψ ijðzÞ defines the interactions

between sites as a function of the dumbbell size, z (see
Fig. 1) [29]. For z → 0, ECoul [Eq. (2)] reduces to
interacting Ising dipoles on the triangular lattice [31].
Here we consider z ¼ 0.46a as this is relevant to
Ba3CuSb2O9 [7].
We have performed Monte Carlo simulations of ECoul

[Eq. (2)] over a wide range of temperatures [29]. The
ground state is sixfold degenerate, and consists of alter-
nating stripes of σ ¼ 1 and σ ¼ −1, parallel to either the
A, B, or C bonds [see Fig 1(a)] [32]. At Tc=ψnn ≈ 0.19,
with the nearest-neighbor interaction ψnn ≈ 0.18 in the
units of Eq. (1), there is an apparently first order phase
transition into a domain wall network state, as proposed in
Ref. [33] for the Ising model with further neighbor
exchange interactions. We postpone a detailed description
of the low-temperature behavior to another publication, and
instead concentrate on the temperature region above the
phase transition.
For T > Tc we perform simulations to measure the

dumbbell structure factor. In the absence of interaction
between bilayers, this is given by

Sðq⊥; qzÞ ¼ sin2
qz
2

����
X

i
σi exp½iq⊥ · r⊥;i�

����
2

; ð3Þ

where r⊥;i measures the position of dumbbell i in the plane
of the triangular lattice. Here qz ¼ 2πzl=c, where for
Ba3CuSb2O9 the dumbbell height is z ¼ 2.69 Å, the unit
cell has a height c ¼ 14.37 Å and l is measured relative to
the structural Bragg peaks [7]. For l ¼ 0 it is not possible to
observe scattering from the dumbbell structure, as there
is a destructive interference between X and Sb ions
within the same dumbbell. Scattering is strongest when
qz ¼ ð2nþ 1Þπ, where n is an integer, and for n ¼ 0
this corresponds to l ¼ c=ð2zÞ ≈ 3. Figure 2 shows
Sðqx; 2π=

ffiffiffi
3

p
; πÞ at a range of temperatures, and there

are diffuse peaks centered on q⊥ ¼ ð�2π=3; 2π=
ffiffiffi
3

p Þ [see
also Fig. 3(a)].
The diffuse nature of the peaks in SðqÞ [Eq. (3)]

corresponds to the absence of long-range order in the
dumbbell structure. The width of the peaks at half maxi-
mum gives a measure of the correlation length, ξIs. For
example, for T ¼ 0.9ψnn [blue curve in Fig. 2], we find
ξIs ∼ 2a. In domains of this length scale the system is
correlated in a stripelike pattern [see Fig. 1].
The motivation for studying the dumbbell structure

factor is that it can be compared with low temperature
x-ray diffraction data. This allows the freezing temperature,
Tfrz, of the sample to be determined, and then simulation
at this temperature can be used to shed light on the
low-temperature structure of the dumbbells in the material.
One way to determine Tfrz is to consider the ratio
R ¼ Sð0; 2π= ffiffiffi

3
p

; qzÞ=Sð2π=3; 2π=
ffiffiffi
3

p
; qzÞ, since this is

sensitive to temperature, as can be seen in Fig. 2. The
inset to Fig. 2 shows how R increases as a function of T,
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eventually saturating in the uncorrelated, high-temperature
region.
X-ray diffraction data for Ba3CuSb2O9, which is taken

from Ref. [7], are shown in Fig. 3. The value R ≈ 0.4 is
extracted, giving T frz=ψnn ≈ 0.9, and the simulated struc-
ture factor at this temperature is superposed on the
experimental data, showing a good fit. The freezing
temperature can be converted into Kelvin by reintroducing
the dimensionful prefactors in ECoul [Eq. (1)]. The only
unknown is the relative permittivity ϵr. The dumbbells are
definitely frozen at T ¼ 300 K, the synthesis temperature is

> 1000 K [7], and, for Tfrz to be within these limits, a not
unreasonable value of ϵr ∼ 10 is necessary. Furthermore,
the relatively high value of Tfrz provides a justification for
ignoring coupling between bilayers. However, the fact that
diffuse scattering is observed at l ¼ 10 suggests that some
interbilayer correlation is present [7]. This is left for future
investigation.
Once Tfrz has been determined, the dumbbell structure at

this effective lattice temperature can be studied in detail.
The density of defect triangles, ntri, on which all three
dumbbells are orientated in the same direction, is shown in
Fig. 4. This density is measured relative to a ferromagnetic
state, in which all dumbbells are orientated in the same
direction. The density, ntri, increases steadily with temper-
ature and, for T frz=ψnn ¼ 0.9, is given by ntri ≈ 0.03.
Also shown in Fig. 4 is the density of hexagonal

plaquettes, nhex, measured relative to a long-range honey-
comb arrangement of dumbbells (N=3 plaquettes).
Hexagonal plaquettes are defined as six equivalently
orientated dumbbells surrounding a dumbbell of the oppo-
site orientation. The hexagon plaquette density remains low
at all temperatures, rapidly saturating at only nhex ≈ 0.035,
and, for T frz=ψnn ¼ 0.9, is given by nhex ≈ 0.025. In
Ref. [7], the presence of diffuse peaks in the x-ray
diffraction spectrum at q⊥ ¼ ð2π=3; 2π= ffiffiffi

3
p Þ [see Fig. 3]

was taken as proof of a short-range honeycomb arrange-
ment of the dumbbells, since this is the wave vector at
which Bragg peaks are found for a long-range ordered
honeycomb arrangement. Here we have shown that such a
signal arises even in the absence of a significant number of

FIG. 3 (color online). Comparison between the simulated
structure factor following from ECoul [Eq. (1)] and x-ray
diffraction experiments for Ba3CuSb2O9 [7]. The simulation
temperature, Tfrz, is chosen so as to give the best fit to the
experimental data and L ¼ 48. (a) Simulated structure factor at
T ¼ T frz with qz ¼ π. (b) Cut through the simulated structure
factor at qy ¼ 2π=

ffiffiffi
3

p
and qz ¼ π [blue dots, shown by white

dashed line in (a)] compared to x-ray diffraction experiments (red
dots). Bragg peaks at qx ¼ �2π are ignored in the simulation,
since these are independent of the dumbbell ordering.

FIG. 4 (color online). Fraction of hexagonal plaquettes, nhex,
and defect triangles, ntri, as predicted from simulations of ECoul
[Eq. (1)]. Hexagonal plaquettes have six dumbbells of equivalent
orientation surrounding a dumbbell of the opposite orientation.
The fraction of hexagonal plaquettes relative to a long range
honeycomb lattice (N=3 plaquettes) rapidly saturates with in-
creasing temperature at nhex ≈ 0.035 (blue, upper curve). Defect
triangles have three dumbbells with the same orientation, and the
fraction relative to a ferromagnetic state (2N defect triangles)
steadily increases with temperature (red, lower curve). The black
dashed line shows T=ψnn ¼ 0.9, which is believed to describe the
low-temperature dumbbell structure of the Ba3CuSb2O9 crystals
studied in Ref. [7] (see Fig. 3).

FIG. 2 (color online). The dumbbell structure factor, SðqÞ, as
predicted by simulations of ECoul [Eq. (1)]. The structure factor
is plotted at a range of temperatures as a function of qx with
qy ¼ 2π=

ffiffiffi
3

p
and qz ¼ π. From top to bottom: T=ψnn ¼ 0.45

(black), T=ψnn ¼ 0.9 (blue), T=ψnn ¼ 1.4 (green), T=ψnn ¼ 2.4
(orange) and T=ψnn ¼ 3.2 (red). In the inset, the ratio R ¼
Sð0; 2π= ffiffiffi

3
p

; qzÞ=Sð2π=3; 2π=
ffiffiffi
3

p
; qzÞ (small dotted arrow com-

pared to large dashed arrow) is plotted as a function of T.
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hexagonal plaquettes, the building blocks of the honey-
comb lattice.
How should the lattice of X ions be described, if not by a

honeycomb lattice? To answer this a representative snap-
shot of the simulations at T frz=ψnn ¼ 0.9 is shown in
Fig. 1(b). The lattice can be divided into a set of equally
orientated clusters—that is clusters of neighboring dumb-
bells of the same orientation that are completely surrounded
by dumbbells of the opposite orientation [shown joined by
either blue or orange bonds in Fig. 1(b)]. Superexchange
between the electronic degrees of freedom associated with
the X ions predominantly occurs within these equally
orientated clusters, as superexchange between oppositely
orientated neighboring dumbbells is expected to be weak
[7]. These superexchange-linked clusters can be seen to
have a branching structure, and a wide distribution of
sizes, n.
In Fig. 5 we show pðnÞ, the probability that an arbitrary

site is part of an n-site cluster. For L ¼ 48 (N ¼ 6912) and
for 10 < n < 2000 a good fit to the numerical data is
obtained using a power-law probability function, pðnÞ ¼
Cn1−τ, with C ¼ 0.063 and τ ¼ 2.06. Finite size effects
result in a peak of pðnÞ at large n and the power law also
breaks down at n ≲ 10, where stripelike correlations
between Ising spins suppress the number of small clusters.
Finite size scaling analysis of the average size of the largest
cluster shows hnmaxi ∝ Ldf , where df ¼ 1.90 is the fractal
dimension [29].
These findings match very well to percolation theory for

a model of random site filling on the triangular lattice [34].
In this model the percolation threshold is at 1=2-filling, and
at this critical point the exponents τ ¼ 187=91 ¼ 2.055 and
df ¼ 91=48 ¼ 1.896 are predicted. The close agreement

between these exponents and those found in the simulations
suggest that the distribution of sizes of the superexchange
linked clusters is at, or very close to, the percolation critical
point. Thus superexchange linked clusters can be expected
at all length scales [29].
It is common in the Ba3XSb2O9 family that a sizable

fraction of the electronic spins are “orphaned” and interact
only weakly with the rest of the system. This is observed
from a variety of experimental probes and, for X ¼ Cu, the
percentage of orphan spins has been measured in the range
of 5%–16% [6–8,14]. Neutron scattering studies provide
evidence that the Cu spins form nearest-neighbor singlet
bonds at low temperature [7], leading us to consider
covering the lattice in singlet dimers. Maximally covering
the lattice of Cu2þ ions with nearest-neighbor singlet
dimers leaves a number of orphan spins, due to the
geometry of the clusters, and an example of this is shown
in Fig. 5(b). At T frz=ψnn ¼ 0.9 the percentage of orphan
spins calculated in this way is 6%, and, for T > Tc this is
almost independent of both the simulation temperature and
the system size [29].
In this dimer picture, clusters with n ¼ 1 are guaranteed

to be an orphan spin, and make up about 15% of the total
orphan spin population. At low temperature, ESR measures
the local environment of the orphan spins [7], and is
therefore biased towards a hexagonal local environment.
It is interesting to speculate about the low temperature

spin-orbital state in Ba3CuSb2O9. Theory suggests that a
nearest-neighbor singlet bond is associated with a ferro-
orbital alignment between the two sites [10,12,15]. In order
for an orbital resonance to occur, it is therefore necessary
for the system to resonate between different singlet cover-
ings of the lattice. The mechanism for this resonance can
arise directly from the superexchange interaction, or from
coupling to the lattice [10,12,15].
For a typical Cu2þ superexchange-linked cluster found

from solving ECoul [Eq. (1)] at T ¼ T frz, there are many
possible maximal dimer coverings, which, for geometrical
reasons, leave a number of uncovered monomer sites
(orphan spins). An oscillation between different dimer
coverings can equivalently be viewed as a hopping of
orphan spins around the cluster. Thus resonance between
different dimer configurations of a cluster not only provides
a mechanism by which orbitals can resonate, but also
suggests that most orphan spins will be delocalized. Since
the largest superexchange linked cluster diverges in the
thermodynamic limit, a resonating state of this type can be
designated a spin-orbital liquid on the branch lattice. In this
picture it is the correlated dumbbell disorder that promotes
liquidlike behavior.
To test this picture we performed exact diagonalization

for a spin-orbital Hamiltonian [12,29] on the six-site cluster
shown in Fig. 5. A trial ground state wave function was
constructed from the five different dimer coverings of the

FIG. 5 (color online). Statistics of superexchange linked Cu2þ
clusters at T frz=ψnn ¼ 0.9, measured by simulation of ECoul
[Eq. (1)]. (a) The probability, pðnÞ, that a site belongs to a cluster
of size n (L ¼ 48). For 10 < n < 1000 a power-law distribution
pðnÞ ¼ 0.063=n1.06 provides a good fit to the data. At large
cluster sizes (n > 1000) the finite size of the simulation becomes
important. (b) A six-site superexchange linked cluster of Cu2þ
ions, with five distinct maximal dimer coverings. For geometric
reasons, only four sites can be covered, leaving two monomers
(orphan sites).
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cluster (shown in Fig. 5), and the overlap with the exact
wave function was 0.98 [29].
In conclusion, we have considered the lattice structure

of the Ba3XSb2O9 family, which includes a number of
proposed spin-liquid materials. By studying a model of
charged dumbbells on the triangular lattice using
Monte Carlo simulations, we find a nontrivial lattice
structure [see Fig. 1(b)], in which superexchange linked
clusters of X ions form a fractal branching structure.
Focusing in particular on X ¼ Cu, which has been pro-
posed as a spin-orbital liquid, we show that the obtained
lattice structure is consistent with x-ray diffraction data. A
simple model of nearest-neighbor singlet covering of the
lattice results in a reasonable estimate for the number of
orphan spins, and gives rise to a scenario in which
correlated dumbbell disorder promotes a spin-orbital liquid
state with nonlocalized orphan spins.
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