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The de Haas–van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of
magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed,
the effect forms the basis of a well-established experimental procedure for accurately measuring FS
topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-
Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical
situation, there can be quantum oscillations even for band insulators of certain types. We provide simple
analytic formulas describing the temperature dependence of the quantum oscillations in this setting,
showing strong deviations from LK theory. We draw connections to recent experiments and discuss how
our results can be used in future experiments to accurately determine, e.g., hybridization gaps in heavy-
fermion systems.

DOI: 10.1103/PhysRevLett.115.146401 PACS numbers: 71.18.+y, 71.10.Ay, 71.27.+a

Introduction.—Landau quantization of electrons [1],
which leads to quantum oscillations (QO) of physical
observables as a function of the applied magnetic field
[2], has been one of the cornerstones of condensed matter
physics. On the one hand, it leads to new phenomena such
as the integer quantum Hall effect [3] and its fractional
version [4]. For the latter, it even induces an unexpected
new phase of matter beyond the standard Landau classi-
fication [5], which ignited the field of topological phases
[6]. On the other hand, it is itself an invaluable tool for the
characterization of correlated metallic systems [7]. The
canonical Lifshitz-Kosevich (LK) [8] theory of QO in
metals showed that the periodicity, e.g., of the magnetiza-
tion, is proportional to extremal cross-sectional areas of the
FS, thus turning QO into a precise quantitative and, by now,
standard tool for determining FSs. In addition, it is possible
to study correlation effects from the LK theory by
extracting the effective mass m� from the temperature
dependence of the QO amplitudes given by (for the first
harmonic)

RLKðTÞ ¼
χ

sinh χ
with χ ¼ 2π2T

ℏωc
ð1Þ

and the cyclotron frequency ωc ¼ ðeB=m�cÞ.
Later, the LK theory was extended to include more

general self-energy interaction effects [9–12], but these
always preserved the general structure of the LK theory
only renormalizing parameters, e.g., m�. It still comes as a
great surprise that experimentally almost all materials, from
weakly interacting metals to strongly correlated heavy-
fermion systems [13–15] or copper oxide high-temperature
superconductors [16–20], are consistent with a LK descrip-
tion, which is manifestly an effective single-particle theory.

There have been only very few exceptions for heavy-
fermion systems, e.g., CeCoIn5 [21] and most recently the
tentative topological Kondo insulator SmB6 [22], violating
the general temperature behavior, Eq. (1). There have been
recent theoretical studies on QO that explored novel effects
due to symmetry breaking from commensurate [23,24] or
incommensurate [25] charge density waves, but they
remained in the canonical LK framework. A notable
exception is given by Ref. [26], which derived a general-
ized formula for exotic quantum critical systems described
via nonperturbative field theories.
Historically, the firmly established understanding of QO

is tied to the existence of a FS, which, in principle, impedes
the following simple question: Can there be QO in an
insulator? In this Letter, we show that, surprisingly, the
answer is yes there can. This arises if the cyclotron energy
ℏωc is of the order of the electronic gap and the band
structure picks out a particular area of the Brillouin zone
(BZ), as described below. We further show that, even in this
noninteracting setting, the electrons exhibit anomalous
non-LK QOs.
We show that a simple band insulator of itinerant

electrons hybridized with a localized flat band (at energy
W) does exhibit well-defined QO. The periodicity is given
by the area defined by the intersection of the unhybridized
bands even if the chemical potential μ is inside the
hybridization gap or inside the flat part of the FS. In the
latter case, the periodicity is equally unusual because it is
not proportional to the FS area. We find that the temper-
ature dependence of the oscillation amplitudes strongly
differs from the standard LK theory: First, if μ is inside the
gap, QO amplitudes have a maximum at a temperature set
by the hybridization gap, γ. Second, for a chemical
potential inside the bands but close to the flat regions,
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the behavior is even more complex and governed by an
additional energy scale δμ, which is the distance of μ to the
flat band energy W. For δμ < 2γ ≪ W there is a character-
istically steep increase of the amplitudes towards the lowest
temperatures.
Our main result is the general temperature dependence

RðTÞ ¼ χ
X∞
n¼0

2e−2χ½nþð1=2Þ�Γ½ðδμ=γÞ;ðT=γÞ;n�; ð2Þ

which is calculated for a continuum model of our
scenario with Γ½ðδμ=γÞ; ðT=γÞ; n� ¼ 1þ �½2δμ=γ�2 þ
½ð4πT=γÞðnþ 1

2
Þ�2�−1. A simple approximate formula

RðtÞ≃ R0ðTÞ ¼
χ

sinh ðχΓ0Þ
ð3Þ

is valid in the regime ℏωc ⪆ 2γ or, more generally, for
T ⪆ 0.25γ, where we can make the replacement Γ → Γ0 ≡
Γ½ðδμ=γÞ; ðT=γÞ; n ¼ 0Þ to obtain a generalized LK-like
form, which has a simple interpretation as a doping and also
temperature-dependent effective mass renormalization. In
order to substantiate our unexpected findings, we reproduce
all our results in an unbiased numerical tight-binding lattice
model calculation.
The model.—We consider noninteracting electrons with

dispersion ϵð~kÞ hybridized (strength γ=2) with a flat band of
completely localized electrons at energy W. The micro-
scopic origin of such a model is irrelevant for our
discussion, but the Kondo lattice model relevant for
heavy-fermion systems is effectively described by such a
simple band structure at temperatures well below the Kondo
temperature [27–29]. The Hamiltonian is simply written as

H ¼
X
~k

"
ϵð~kÞ γ

2
γ
2

W

#
ð4Þ

with the two resulting energy bands E0
�ð~kÞ ¼

1
2

n
ϵð~kÞ þW �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵð~kÞ −WÞ2 þ γ2

q o
separated by a

hybridization gap γ and centered around the flat band
energy W (blue dashed line) [see Fig. 1(ii)]. If μ lies within
the band gap, the system is insulating. Within this model,
Eq. (4), describing coupling of a dispersive band to
localized orbitals (such that γ and W are wave-vector
independent), the orbital effects of a magnetic field ~B ¼
B~z act only on the dispersive band. The energy eigenstates
of this band are no longer plane waves but are replaced by
Landau-level (LL) states computed for the dispersive band

with ~B included. For a simple parabolic band in a

continuum model, ϵð~kÞ ¼ j~kj2=2m, this leads to the usual
Landau-level spectrum. One may then rewrite Eq. (4) in the
basis of Landau-level states. Since γ andW are independent

of the orbital basis, this amounts to replacing ϵð~kÞ →
ℏωðlþ 1

2
Þ with ωc ¼ eB=m and

P
~k → NΦ

P
l with NΦ ¼

BA=Φ0 (here Φ0 ¼ hc=e is the flux quantum and A is the
system area). We have neglected the Zeeman energy
splitting of spin components. For each LL index l we have
two energies with E−ðlÞ < EþðlÞ for all l. Note that for the
lower band E−ðl → ∞Þ → W, giving a divergent density of
states; this is an artefact of the continuum flat band which
needs to be regularized.
Anomalous de Haas–van Alphen effect (hHvAE).—We

calculate the magnetization M from the grand canonical
potential (kB ¼ 1)

M ¼ −
∂Ω
∂B ¼ ∂

∂BT
X
i

ln ½1þ e½ðμ−EiÞ=T�� ð5Þ

with a summation over all possible states including all
degeneracies. We begin with the zero-temperature behavior

Ωðμ; T ¼ 0Þ ¼ NΦ

X
l;�;E�ðlÞ<μ

fE�ðlÞ − μg: ð6Þ

We regularize the divergent sum over E−ðlÞ by introducing
a maximum chemical potential for that lower branch,
ðμmax=WÞ ¼ 1

2
fνmax þ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½νmax − 1�2 þ ½γ=W�2

p
g, which

is simply related to the maximum occupation νmax of the

FIG. 1 (color online). Main figure (i): Quantum oscillations of
the magnetization M as a function of W=ℏωc ∝ 1=B. Inset (ii):
Sketch of the band structure for our model (exaggerated hybridi-
zation gap for better visibility) and positions of the different
chemical potentials μ. If μ is far away from the gap (black dashed
and dot dashed lines), which is opened by hybridizing a localized
flat band with an itinerant band, the periodicity of standard QO is
proportional to the extremal cross section of the Fermi surface
(here directly related to μ ¼ ðS=2πmÞwith the area S ¼ πk2F). We
find that even if μ is inside the gap (blue dashed line) or in the flat
band region (red line), there are well-defined QO that are directly
proportional to the area picked out by the intersection of the
unhybridized bands (here directly proportional to W=ℏωc).
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flat band without a field. Here, νmax is defined relative to the

filling of a dispersive band ϵð~kÞ with Fermi energy μ ¼ W,
which defines an occupied area of the BZ S. For our

continuum model with ϵð~kÞ ¼ ðk2=2mÞ, we simply have
S ¼ πk2F, and the relation μ ¼ ðS=2πmÞ straightforwardly
generalizes our results to general dispersions ϵð~kÞ [7].
In Fig. 1(i) we show the variation of M as a function of

the magnetic field for different chemical potentials (fixed
γ=W ¼ 0.05, νmax ¼ 5, and all our findings are indepen-
dent of the cutoff occupation νmax). For μ far above (below)
the gap, there are the usual sharp QO with periodicity F
directly proportional to the occupied FS volume Fμ=B ¼
ðμ=ℏωcÞ [see the black dashed (dot dashed) curves]. For μ
inside the gap (blue dashed line) or inside the flat part of the
bands (red line), we still find well-defined anomalous QO
of comparable amplitudes. However, now these QO have a
periodicity FW=B ¼ ðW=ℏωcÞ, hence a BZ area defined by
the intersection of the unhybridized bands. For larger
values of γ=W (not shown) the amplitude of QO are
strongly suppressed for smaller magnetic fields, but as
long as ℏωc ≳ γ they remain observable.
Effect of temperature.—Next, we study the temperature

dependence, which can be easily calculated for free
electrons from Ωðμ; T ¼ 0Þ via the convolution [7]

Ωðμ; TÞ ¼ −
Z

∞

−∞

∂fðξ − μÞ
∂ξ Ωðξ; 0Þdξ; ð7Þ

with the derivative of the Fermi function
−½∂fðξ − μÞ=∂ξ� ¼ 1=2Tf1þ cosh½ðξ − μÞ=T�g, which is
strongly peaked at ξ ¼ μ with a width set by temperature.
The advantage of this expression is its intuitive interpre-
tation: It is a weighted average over different chemical
potentials from a window proportional to temperature. For
standard QO different μ correspond to different periods;
hence, increasing T always damps the sharp amplitudes via
dephasing. Evaluating Eqs. (6) and (7) numerically, we find
that this is not the case for our system: e.g., for μ ¼ W
inside the gap we find that initially the amplitudes are
constant before they increase up to a maximum at T ≈ γ=4
before damping sets in (not shown). This arises because in
the temperature average over different μ, all QO have the
same periodicity (at least for low T) preventing dephasing;
however, those from regions in the flat part have a larger
amplitude.
For an analytical calculation of the T dependence, we

follow earlier work [12,26] using a finite-temperature
description in terms of Matsubara frequencies
ωn ¼ 2πiTðnþ 1

2
Þ. The oscillatory part of the grand

canonical potential takes the form Ωðμ; TÞ ¼
TNΦ

P∞
k¼1ð1=kÞRe

P∞
n¼0 e

i2πkl�ðnÞ, with l�ðnÞ being the
LL index that defines the pole of the Green’s function
Gðiωn; lÞ ¼ ðiωn − ½E�ðlÞ − μ�Þ−1. We write μ ¼ W þ δμ
and find a single l� to obtain

Ωðμ; TÞ ¼ TNΦ

X∞
k¼1

1

k
cos

2πkW
ℏωc

×
X∞
n¼0

e−f4π2kT½nþð1=2Þ�=ℏωcgΓ½ðδμ=γÞ;ðT=γÞ;n�; ð8Þ

where we have neglected a small n and δμ dependence of
the real part of l� which only slightly modifies the
periodicity but not the damping; Γ½ðδμ=γÞ; ðT=γÞ; n� is
defined below Eq. (2). Now differentiating with
respect to the magnetic field and in the limit
ðδμ=WÞ; ðℏωc=WÞ ≪ 1, we obtain the final result for the
first harmonic k ¼ 1 of the magnetization:

M ¼ −
AWe
2π2c

sin
2πW
ℏωc

RðTÞ; ð9Þ

with the damping factor RðTÞ given in Eq. (2).
In Fig. 2 we plot representative curves of RðTÞ that fully

capture the behavior we have found by numerically
evaluating Eqs. (6) and (7). For a chemical potential inside
the gap (ðδμ=γÞ ¼ 0, black curves), there is an increase of
the amplitudes up to a maximum T, which is set by the
energy scale of the hybridization γ itself. The total (relative)
height of the maximum increases (decreases) for smaller
ðγ=ℏωcÞ [see inset (ii)]. For larger or smaller fillings a
characteristic steep increase of the amplitude at a scale
T ≈ δμ=10 is observed. The simple approximate formula
R0ðTÞ [see Eq. (2)], in general, reproduces the behavior of
RðTÞ for sufficiently large temperatures [dashed curves in
(i)]. For small values of ðγ=ℏωcÞ it fully captures the exact
result, as shown in the inset (ii).
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FIG. 2 (color online). Temperature dependence of the damping
factor RðTÞ. In (i) we show, for ðγ=ℏωcÞ ¼ 0.7 and for different
values of the chemical potential, μ ¼ W ¼ δμ, parametrized by
δμ=γ. Dashed lines are calculated from the approximate R0ðTÞ in
which Γ is replaced by Γ0 ¼ Γðn ¼ 0Þ. The inset (ii) shows the
same for a different value ðγ=ℏωcÞ ¼ 0.2. In this case R0ðTÞ
always coincides with the exact RðTÞ. Note that for large values
of δμ=γ, the standard Lifshitz-Kosevich behavior RLK (red dashed
line) is quickly approached.
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Lattice model.—So far, our theory was restricted to a
continuum description, requiring regularization of the flat
band occupation. To confirm our findings for a microscopic
model, we have performed a full lattice tight-binding
calculation. We consider a model of spinless electrons
on a square lattice, with the Hamiltonian

H ¼ −
X
hi;ji

ðtijĉ†i ĉj þ H:c:Þ

þ γ

2

X
i

ðĉ†i f̂i þ H:c:Þ þ
X
i

Wf̂†i f̂i: ð10Þ

The magnetic field is incorporated in the phases of the
nearest-neighbor hopping parameters tij via the usual
Peierls substitution. These itinerant electrons are coupled
locally to a second completely localized orbital with on-site
energy W at each site. The magnetic flux through the
magnetic unit cell of size LxLy is quantized to multiples of
the elementary flux quantum Φ ¼ LxLyB ¼ mΦ0. We
study the system at a series of magnetic fields for which
Ly ¼ 2, and there is an integer Lx such that the flux
Φ ¼ Φ0. For each field the Hamiltonian is easily diagon-
alized as before, but now the maximum occupation of the
flat band is fixed by the total number of lattice sites, for
details see Supplemental Material [30]. The QO are directly
calculated from the grand canonical potential, Eq. (5).

In Fig. 3 we show the QO of the magnetization, which
we obtain from our lattice simulation. We not only recover
the anomalous dHvAE at T ¼ 0 [see main panel (i)], but we
also confirm the peculiar temperature dependence RðTÞ of
the amplitudes [see inset (ii)]. If the chemical potential lies
in the flat part of the band such that δμ ≪ W, we recover
the peculiar upturn of the amplitudes towards the lowest T.
Discussion and conclusion.—We have shown that, at

odds with the canonical understanding of QO in metals, a
simple model of itinerant electrons coupled to a flat band
can lead to clear QO even in the complete absence of a FS.
We found strong deviations of the temperature dependence
from the usual LK theory, and we derived analytic expres-
sions that can be tested in future experiments. We believe
that our results are most promisingly applicable to certain
heavy-fermion materials whose properties well below the
Kondo temperature are effectively described by a band
structure similar to our model [27–29]. In that context it is
worth pointing out that our theory has its most prominent
deviations from the LK description in a regime in which the
cyclotron frequency ℏωc is larger than the hybridization
strength γ as well as the activation gap γ2=4W—a condition
fulfilled at least by some heavy-fermion materials. Note that
there is one other known class of systems with an excitation
gap in the absence of a magnetic field displaying QO—
superconductors close to the upper critical field (see
Ref. [31] and references therein). However, this example
is distinct from our case, as the magnetic field strongly
influences the gap itself and QO are only observable because
the suppression of the superconducting gap in vortex cores
makes the system effectively gapless.
Interestingly, the main features of our peculiar temper-

ature dependence were already observed in heavy-fermion
compounds in two of the rarely available experimental
examples deviating from LK theory: Amplitudes of some
frequencies of the dHvAE in CeCoIn5 display a clear
maximum at a nonzero temperature of 100 mK [21], which
has been attributed to a fine-tuned spin-dependent mass
enhancement. Most recently, the tentative topological
Kondo insulator SmB6 [32], for which the appearance of
QO itself, despite the opening of an activation gap [15] (as
seen in transport), has been a puzzle, does show QO with a
very strong increase of intensity below 1 K, signaling the
presence of a second low-energy scale in the system [22].
Although the latter is likely an interaction effect, it is
interesting to note that in our noninteracting theory, a
chemical potential not in the gap but just touching one of
the heavy bands (jδμ=γj > 0) [33] sets a new energy scale
and gives a very similar temperature dependence with a
steep increase of the amplitudes at very low temperatures
(see Fig. 2). For the actual material SmB6 it is more likely
that our scenario just explains why there are QO in this
Kondo insulating system at all, but the incorporation of
self-energy effects into our theory, which will introduce a
second energy scale from coupling to collective modes, is a

FIG. 3 (color online). QO oscillations for a tight-binding lattice
model with W ¼ −2.3 and γ ¼ 0.2 (all energies in units of t).
(i) The periodicity of the oscillations varies with chemical
potential μ. In the legend, we state the QO period F in terms
of an equivalent area in k space, SQO ¼ 2πeF=ℏ, and also state
the Fermi surface area, SFS. (These areas are expressed in units of
the BZ area.) As long as μ is far from the gap (black dashed and
dot dashed lines), these areas nicely coincide, indicating standard
LK behavior. If μ is inside or close to the gap (green, blue, red
dashed lines), we find anomalous QO as before, with the period
FW set by the crossing with the flat band, for which SQO ¼ 0.152.
In the inset (ii), we extracted the temperature dependence RðTÞ
by calculating the difference between a consecutive minimum
and maximum ofM as a function of temperature, which confirms
the analytical behavior of Eq. (2) (compare to Fig. 2).
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promising route for future investigations; more exotic
scenarios have also been put forward [34]. In addition, it
is an open question for future research whether certain
semiconductors with small direct band gaps could also
display similar anomalous dHvAEs.
Despite many decades of intense research on the dHvAE,

we have demonstrated that it still holds surprises—there
can be QO even in insulating systems. Beyond a mere
curiosity, the interest in standard LK-like QO derives from
its capacity of accurately determining FSs. Similarly, we
anticipate that our anomalous dHvAe applicable to heavy
Fermi liquids will be useful in the future for determining
hybridization gaps (proportional to the Kondo coupling) by
measuring the temperature of maximum amplitudes.

We thank D. Khmelnitskii for discussion. It is a pleasure
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S. Sebastian and for sharing their experimental data on
SmB6 prior to publication [22]. The work of J. K. is
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