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The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems
where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the
perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is
considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order
coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real
and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation
functions with a built-in singularity structure within the complex plane of the coupling constant, which is
tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation
functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and
return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent
and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of
the coupling constant.

DOI: 10.1103/PhysRevLett.115.143001 PACS numbers: 31.15.xp, 11.10.Jj, 11.15.Bt, 32.60.+i

Since the pioneering work of Dyson [1], the fundamental
problem of how to reconstruct physical observables from
divergent power-series expansions has remained an active
area of research [2,3]. This problem has been encountered
in virtually all areas of quantum physics, such as statistical
[4–6], string [3], and quantum field theories [7–9], as well
as in many-body problems of condensed matter physics
[10,11] and quantum chemistry [12].
Simple examples can be found in single-particle quan-

tum mechanics [2–4,9,13–17]. For instance, the perturba-
tion expansion for the Stark Hamiltonian has zero radius of
convergence [15–17]. The electronic ground state energy of
hydrogen in a homogeneous electric field is shifted and
broadened as the electric field intensity F increases. As a
function of F, the perturbed ground state energy then has
both a real part Δ and an imaginary part Γ=2,
EðFÞ ¼ ΔðFÞ − iΓðFÞ=2. The latter reflects the tunneling
rate in and out of the Coulomb potential [18], which is very
difficult to obtain perturbatively. To see this, let f ≡ ðF=4Þ2
and consider the perturbation expansion [16] for the ground
state energy of hydrogen in powers of F around F ¼ 0—
we use atomic units (a.u.),

EðFÞ ∼ −
1

2

X∞
n¼0

enfn ¼ −
1

2
ð1þ 72f þ 28 440f2

þ40 204 464f3 þ � � �Þ: ð1Þ
The same-sign expansion coefficients en are real and grow
factorially with 2n and thus the series in Eq. (1) has zero
radius of convergence. No matter how small F is, the series
in Eq. (1) will never converge to EðFÞ, and so “∼” is used
in Eq. (1) to indicate that the rhs is an asymptotic expansion
of the lhs. Furthermore, the rhs in Eq. (1) is real and

therefore its partial sums cannot directly yield −iΓðFÞ=2.
Ultimately, the divergence of a perturbation expansion
stems from the presence of singularities (poles and/or
branch cuts) in EðFÞ for complex F: the series in
Eq. (1) diverges because EðFÞ is not analytic at F ¼ 0

which is a branch point. Physically the semidiscrete
spectrum for F ¼ 0 is replaced by a dense continuum of
eigenvalues when F ≠ 0; EðFÞ is a complex resonance
eigenvalue, characterizing the position (ReE) and width
(ImE) of a peak in the density of states. To evaluate EðFÞ
for real F, it is necessary to approach the real F axis from
above or below, corresponding to incoming or outgoing
boundary conditions. The imaginary part of EðFÞ discon-
tinuously changes sign at ImF ¼ 0.
Remarkably, accurate calculations of ΓðFÞ have been

achieved by a combining Eq. (1) with Borel-Padé (BP)
resummation [17,19–21]. Often, for Stark-like problems
these techniques require far too many coefficients for them
to be reasonably accurate. Padé approximants (PAs) [22]
and the techniques based on them—-such as BP—can
account for poles in EðFÞ but they are not well suited to
mimic branch cuts, necessitating the calculation of very
many coefficients. Resummation approaches that go
beyond Padé remain virtually unknown by most users of
perturbation theory: quadratic Padé approximants [23] are
able to incorporate square-root branch cuts, but have been
seldom used; modern resummation schemes that combine
perturbation theory with large-order information [6] remain
largely unexplored. Methods to reliably estimate quantities
like ΓðFÞ from low order perturbation theory are therefore
badly needed: in practice one has available only low-order
coefficients to work with.

PRL 115, 143001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

2 OCTOBER 2015

0031-9007=15=115(14)=143001(5) 143001-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.143001
http://dx.doi.org/10.1103/PhysRevLett.115.143001
http://dx.doi.org/10.1103/PhysRevLett.115.143001
http://dx.doi.org/10.1103/PhysRevLett.115.143001


These considerations lead us to the following question:
Can we calculate ΓðFÞ accurately with just a few coef-
ficients? In this Letter, we demonstrate that low-order
approximations can, paradoxically, reproduce nonpertur-
bative quantities like ΓðFÞwith excellent accuracy even for
rather large values of the perturbation strength. This is
achieved by using Bender-Wu dispersion relations [13] to
guess the branch cut structure of EðFÞ, and designing
approximants with the desired branch-cut structure “built
in” and with flexible branch points. For the Stark problem
the branch cut structure is indeed known from Bender-Wu
dispersion relations [13]: EðFÞ possesses branch points at
F ¼ 0 and F → �∞; hypergeometric functions are shown
to well reproduce this double branch cut, yielding accurate
low order approximations for Stark-like problems and
showcasing an alternative approximating philosophy where
knowledge of the convergence-limiting singularity struc-
ture in the complex-F plane is exploited to design accurate
low order approximants.
Let us then start by trying to calculate EðFÞ from

Eq. (1). Traditionally, the first choice is to calculate
PAs [22]. These are parametrized rational approxima-
tions, EðFÞ ≈ EL=MðFÞ, where EL=MðFÞ ¼ ðPL

n¼0 pnfnÞ=
ð1þP

M
n¼1 qnf

nÞ, and the parameters pn and qn are
determined by equating each order up to LþM ¼ N in
the Taylor and asymptotic series of EL=MðFÞ and EðFÞ,
respectively, so that EðFÞ ¼ EL=MðFÞ þOðfLþMþ1Þ. PAs
and other similarly simple sequence transformations
[24–26] are valuable tools for analytic continuation (AC),
and can work well in many cases [27]. They provide a
family of rational functions that are easily built order by
order: the first-order PAs are E1=0 and E0=1; the second-
order ones are E2=0, E0=2, and E1=1; etc. By studying the
resulting Padé table, one can in many cases extract good
approximations to the expectation value of interest.
However, by approximating EðFÞ with a rational function
of F, one is imposing an asymptotic behavior for large
values of F which is in general not physical.
Approximating ΔðFÞ can be difficult because the denom-
inator in EL=M can vanish for specific values of the
interaction strength. More importantly, EL=MðFÞ is a real
number for real F, and therefore ΓL=MðFÞ ¼ 0; i.e., the
standard PAs cannot work for our problem as they fail to
give ΓðFÞ ≠ 0 [17,19]. ΓðFÞ ≠ 0 arises from evaluating
EðFÞ “on” the branch cut, where known sequence trans-
formations fail [7,25,26]; such techniques are known to
work well for a strictly alternating series [2,3] while the
coefficients in Eq. (1) are all of the same sign.
Nevertheless, the idea behind PAs is general and it can

be used to propose new approximations. For example, one
can choose a parametrized analytic function EðFÞ ¼
Eðfhig;FÞ to approximate EðFÞ, fixing the parameters
fhig so that the Taylor series for EðFÞ is equal to the
asymptotic series of EðFÞ up to the desired order—for an
example, see Ref. [28]. Since here we are concerned with

the determination of ΓðFÞ, we initially aimed for a function
EðFÞ with the following desirable properties: (i) it is a
complex function of real F, with the ability to mimic the
branch cut structure discussed above; (ii) it can be built
from low-order perturbation theory, as PAs are built; (iii) it
is amenable to generalization by being a member of a more
general family of “higher order” functions; and (iv) is itself
general and flexible including many other functions as
particular cases. A possible candidate satisfying all desir-
able properties (i)–(iv) is the Gauss hypergeometric func-
tion 2F1ðh1; h2; h3; h4fÞ. It satisfies (i) and (ii) as it is
complex and has a branch cut for h4f > 1, and it contains at
most four parameters so it can be built from the coefficients
e1–4. It also satisfies condition (iii) because there are hyper-
geometric functions of higher order pFq which generalize
to the so-called Meijer-G function [29]. Finally, 2F1

satisfies condition (iv) as it is well known that many
functions are particular cases of 2F1.
The Taylor series for 2F1 is given by

2F1ðh1; h2; h3; h4fÞ ¼
X∞
n¼0

ðh1Þnðh2Þn
n!ðh3Þn

hn4f
n; ð2Þ

where ðhiÞn ¼ hiðhi þ 1Þ � � � ðhi þ n − 1Þ. To obtain the hi,
one equates each order in the asymptotic series for EðFÞ
with the corresponding order in the Taylor series for EðFÞ
to obtain a system of four equations with four unknowns

en ¼
ðh1Þnðh2Þnhn4

ðh3Þnn!
; 1 ≤ n ≤ 4: ð3Þ

Once the coefficients hi are determined, hypergeometric
approximations EðFÞ ≈ EðFÞ for, e.g., the Stark case can be
constructed as

EðFÞ ¼ −
1

2 2F1ðh1; h2; h3; h4fÞ; ð4Þ

where 2F1 is evaluated “on the cut” by taking the limit as
ImF → �0, and choosing the sign so that ImEðFÞ < 0
and Γ > 0, consistent with the usual outgoing-wave
boundary conditions. We apply this scheme to three
Hamiltonians from single-particle quantum mechanics,
with divergent perturbation expansions: the Stark
Hamiltonian, Ĥ ¼ −∇2=2 − 1=rþ Fz, with asymptotic
series expansion described [16,17] by Eq. (1); the cubic
one-dimensional anharmonic oscillator with real perturba-
tion [30], Ĥ ¼ −ð∂2=∂x2Þ=2þ λx2=2þ Fx3, and imagi-
nary perturbation [31,32], Ĥ ¼ −ð∂2=∂x2Þ=2þ λx2=2þ
iFx3. Here, λ is the force constant taken as 1=4 in the
numerical analysis below. Furthermore, the perturbed
ground-state eigenvalue has ΓðFÞ ≠ 0 in the first two cases,
while in the third case one has a PT -symmetric [31,32]
Hamiltonian with ΓðFÞ ¼ 0. For simplicity, all equations
are written assuming the Stark Hamiltonian problem. We
stress that Eqs. (3) are nonlinear and multiple solutions are
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possible. For these examples, however, only two solutions
are found (h1; h2; h3; h4) and (h2; h1; h3; h4), which corre-
spond to the same hypergeometric function, as follows
from Eq. (2). The numerical values of h1–4 obtained for the
Stark problem are h1 ≈ 0.319, h2 ≈ −0.162, h3 ≈ 118.193,
and h4 ≈ 164961 [33].
Figure 1 shows ΔðFÞ [top panels] and ΓðFÞ [bottom

panels] as a function of F for these three Hamiltonians.
In Fig. 1(a), values of ΔðFÞ and ΓðFÞ are shown for the
Stark Hamiltonian. Exact results taken from Ref. [34] are
compared with those calculated using the simple hyper-
geometric approximant 2F1 and the same-order 2=2 Padé
approximant. The simple 2F1 approximant introduced here
provides excellent approximations to both ΔðFÞ and ΓðFÞ,
while the 2=2 Padé approximant fails to approximate either
quantity. In Fig. 1(b) a similar comparison is made for the
cubic anharmonic oscillator with real perturbation, taking
the exact numerical values from Ref. [30]. Once again the

2F1 approximant dramatically outperforms the 2=2 Padé
approximant. Finally, in Fig. 1(c) we see the results
obtained from the cubic anharmonic oscillator with imagi-
nary perturbation. In this case, both Padé and exact results
are taken from Ref. [31]. The Padé results have been
obtained in Ref. [31] by means of a Cesaro sum of the
energies obtained from the 22=22 and 22=23 Padé approx-
imants. Figure 1(c) shows that 2F1 outperforms large-order
Padé (N ¼ 44) for the calculation of ΔðFÞ, and they
both reproduce the exact value of ΓðFÞ ¼ 0. Therefore,
the hypergeometric approximant offers an excellent
fourth-order approximation, likely to outperform Padé
approximants of much higher order. Note that a single
hypergeometric approximant yields the results shown in
Figs. 1(b) and 1(c), just by replacing F by iF.
A comparison between the hypergeometric approximant

and PAs is admittedly not very fair. To obtain ΓðFÞ ≠ 0
from PAs, the standard procedure [17] thus far has been

to employ the BP method [2]. In this method, one
starts from a large number of coefficients en and evaluates
the Borel-transformed coefficients bn ¼ en=n!, which are
then employed to calculate PAs BL=MðfÞ and Laplace
transforms FL=MðfÞ ¼

R
∞
0 dtBL=MðftÞe−t, leading to the

BP approximation, EðFÞ ≈ − 1
2
FL=MðfÞ. The Borel

method removes n! from the coefficients, sums the trans-
formed series, and puts n! back into the series by means of
the Laplace transform. The essence of the BP method [2] is
to perform AC on the Borel transformed coefficients and
use the resulting analytic function to evaluate the Laplace
transform. While the BP method allows accurate calcu-
lations of ΓðFÞ from the perturbation series, it also requires
[17] very large orders of perturbation theory that are
unavailable in practice.
In the BP method, the analytic function is a PA. In

the same spirit, we use hypergeometric functions as
analytic functions to construct the Borel-hypergeometric
method, by performing hypergeometric AC of the Borel-
transformed series, calculating the hi coefficients that
define the hypergeometric function 2F1ðh1; h2; h3; h4fÞ
from en=n!. The Borel-hypergeometric approximation,
EðFÞ ≈ EðFÞ, is then

EðFÞ ≈ −
α

2

Z
∞

0

dte−αt2F1ðh1; h2; h3; αh4ftÞ; ð5Þ

and α ¼ ffiffi
i

p
specifies the integration contour [17]. An

expression somewhat similar to Eq. (5) was used in
Ref. [6] as the starting point to construct convergent
strong-coupling expansions, while requiring the knowledge
of both en→∞ and EðF → ∞Þ.
We now apply the Borel-hypergeometric method to

approximate ΔðFÞ and ΓðFÞ for the same three
Hamiltonians studied in Fig. 1. Figure 2 demonstrates that
in all three problems considered the Borel-hypergeometric

FIG. 1 (color online). Real ΔðFÞ and imaginary ΓðFÞ part of the perturbed ground state energy of: (a) the Stark Hamiltonian as a
function of the electric field strength F; (b) the anharmonic oscillator with real perturbation Fx3; and (c) the anharmonic oscillator with
imaginary perturbation iFx3. We compare numerically exact values (dots) [30,31,34], with the fourth-order hypergeometric
approximant 2F1 (solid line) and Padé approximants (dashed line). In all three cases the 2F1 approximant improves over Padé
approximants [of the same-order in panels (a) and (b); and of much higher order in panel (c)] for the calculation of both ΔðFÞ and ΓðFÞ.
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method gives excellent approximations to both ΔðFÞ and
ΓðFÞ, and reproduces the results given by the hypergeo-
metric approximant. Comparing Borel-hypergeometric and
hypergeometric approximants reveals that the hypergeo-
metric approximant is Borel consistent to a very good
approximation. It is well known that a convergent sum and
its Borel resummation give the same result. The hyper-
geometric approximations discussed here satisfy this desir-
able property to a good approximation. We note that in
Fig. 2(b) the Borel-hypergeometric sum diverges for very
small F. This is not a problem since the simple hyper-
geometric approximant is already well behaved for F → 0.
Alternatively, one can calculate one extra order of pertur-
bation theory and build the Borel-hypergeometric approx-
imant from the coefficients of the once-subtracted series,
½EðFÞ − Eð0Þ�=ðe1fÞ. As shown in Fig. 2(b) that procedure
mitigates this minor problem, while leading to similarly
accurate overall results.
We emphasize that the hypergeometric and Borel-

hypergeometric approaches are fourth-order approxima-
tions and thus much simpler and less expensive than the
widely used BP method [2], while being of comparable
accuracy. For instance, in the case of the Stark Hamiltonian
with F ¼ 0.4 a:u:, some 70 orders of perturbation
theory were required in Ref. [17] by the BP scheme to
produce EðF ¼ 0.4Þ ¼ −0.608 − 0.200i, which can be
contrasted with our result EðF¼0.4Þ¼−0.609−0.212i,
and with numerically exact data [34] EðF ¼ 0.4Þ ¼
−0.613 − 0.205i. For the Stark Hamiltonian, F ¼
0.4 a:u:≃2 × 103 MVcm−1 corresponds to a rather large
electric field. We have also checked (data not shown) that

2F1 performs better than fifth-order quadratic PAs.
It is easy to understand why the hypergeometric and

Borel-hypergeometric method dramatically outperform the
traditional BP method [2]. To obtain ΓðFÞ ≠ 0 one needs
approximants with a branch cut in the complex F plane
with branch points at F ¼ 0 and F ¼ �∞ [13,19]. Padé

approximants typically have both poles and zeros on the
real F axis, thereby lacking the correct analytic structure of
EðFÞ that is essential for rapid convergence. The function

2F1ðh1; h2; h3; h4fÞ has a branch cut running from h4f ¼ 1
to h4f ¼ ∞. When calculating fhig from the low-order
coefficients e1;…; e4, we typically obtain a large value for
h4, thus mimicking the correct branch cut structure in EðFÞ,
as illustrated in Fig. 3. We note that the tip of the cut is
not exactly positioned, but for the examples considered
this poses no real problems as h4 is very large and Γ is
extremely small. Nevertheless, hypergeometric approxim-
ants with exactly positioned cuts are possible and might be
needed in some cases [35].
Our study illustrates the potentially immense advantages

of supplementing the low-order information with an AC
function able to mimic the convergence-limiting singularity
structure on EðFÞ. The approach here could have applica-
tions in nonequilibrium many-body perturbation theory
[36] for condensed matter systems where partial resumma-
tions are often used [37–41]. Such approximations are

FIG. 2 (color online). Panels (a)–(c) are as in Fig. 1, but calculated using the fourth-order hypergeometric approximant 2F1 (solid line),
Borel-hypergeometric method (dashed line) in Eq. (5), and the numerically exact values taken from the literature (filled dots) [30,31,34].
In panel (a) we also show the Padé-Borel results (empty dots) from Ref. [17]. The Borel-hypergeometric and hypergeometric methods
are in excellent agreement, both yielding excellent approximations to both ΔðFÞ and ΓðFÞ in all three cases.

FIG. 3 (color online). Imaginary part of 2F1ðh1; h2; h3; h4fÞ
calculated for the Stark Hamiltonian in the complex F plane.
The built-in branch cut extends from ðh4Þ−1 to ∞, and is
essential to obtain ΓðFÞ ≠ 0. The hi are determined from
the first four coefficients of the perturbation expansion. These
yield h4 ≈ 164961.
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uncontrolled because an error is “summed” to all orders
(starting from second order) [27,41]. An alternative could
be to build exact diagrammatic series—including vertex
corrections—at low orders [10,11], and then use a suitable
AC technique. In Ref. [42] the approach put forward in this
Letter has been used to obtain the critical exponents for the
two-dimensional Bose-Hubbard model. Our results should
encourage interested readers to explore perturbation theory
beyond the second order, to study the analytic structure
in the complex coupling-constant plane and to try hyper-
geometric functions as approximants.
In conclusion, by analogy with traditional Padé and

Borel-Padé techniques we have developed a fourth-order
hypergeometric approximant and its natural Borel exten-
sion which are able to mimic convergence-limiting branch
cuts, evade the calculation of a large number of coefficients,
and dramatically outperform standard Padé and Borel-Padé
approaches. Nonperturbative physics can be obtained from
the low-order coefficients of a divergent perturbation series,
as long as a carefully tailored analytic continuation tech-
nique is implemented.
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