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Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during
nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between
DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts
such as scaling and universality. In this work, renormalization group transformations in complex parameter
space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points
associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling
and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical
buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed
point’s universality class. An outlook is given on how to explore this dynamical scaling experimentally in
systems of trapped ions.
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Introduction.—In equilibrium, phase transitions are of
fundamental importance both for the theoretical under-
standing of physical systems as well as for applications. In
this context, continuous phase transitions are of particular
interest because they exhibit scaling and universality [1].
These fundamental concepts are intimately connected to
renormalization group (RG) theory and the associated fixed
points. Dynamical quantum phase transitions (DQPTs)
during quantum real-time evolution have emerged as a
nonequilibrium analogue to equilibrium phase transitions
where Loschmidt amplitudes,

GðtÞ ¼ hψ0je−iHtjψ0i; ð1Þ

become nonanalytic as a function of time [2]. Here, jψ0i is
an initial pure state and H the Hamiltonian driving the
coherent time evolution. DQPTs have been discovered in a
variety of different contexts [2–13], and indications for a
close relationship between DQPTs and equilibrium phase
transitions have been found [2,3,5–7,9]. But still, a major
challenge is to connect to fundamental concepts such as
scaling and universality.
In this work it is shown for the first time that DQPTs obey

scaling and universality. For that purpose, Loschmidt
amplitudes for quantum quenches in one- and two-
dimensional Ising models are mapped exactly onto equi-
librium partition functions at complex couplings for which
RG transformations in complex parameter space are for-
mulated. As a main result, DQPTs are critical points on the
attracting manifold of the unstable fixed points of this RG.
Therefore, Loschmidt amplitudes satisfy a scaling formwith
exponents determined solely by the underlying universality
class. Moreover, numerical evidence is provided that the

critical phenomena in Loschmidt amplitudes are related to
dynamical power-law scaling in spin-spin correlations. An
outlook is given on how to verify this scaling experimentally
in systems of trapped ions within current technology.
Universality and scaling of DQPTs will be studied for

quantum quenches in transverse-field Ising models:

HðhÞ ¼ −
X
hlmi

Jlmσ
z
lσ

z
m − h

XL
l¼1

σxl ; ð2Þ

with σαl , α ¼ x; z, Pauli matrices on lattice site l ¼ 1;…; L,
and L the total number of spins. While in one dimension
(1D) the nearest-neighbor (NN) coupling Jlm > 0 is taken
as uniform Jlm ¼ J, in two dimensions (2D) an anisotropic
square lattice is considered with couplings J within the
rows and J⊥ along the columns.
The Ising model supports DQPTs both in 1D [2,10,14]

and in 2D [12]. Figure 1 shows DQPTs for quantum

FIG. 1 (color online). Dynamical quantum phase transitions in
the Loschmidt echo rate function λðtÞ ¼ −N−1 log½jGðtÞj2� after
quenches in the 1D Ising chain. The nonanalytic kink structure of
λðtÞ is a direct consequence of the universal exponents of the
underlying fixed point; see Eq. (9).
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quenches in the 1D case. Throughout this Letter, plots of
the DQPTs will be given in terms of the Loschmidt echo
LðtÞ ¼ jGðtÞj2 quantifying the magnitude of GðtÞ.
Specifically, due to the large-deviation scaling of LðtÞ
[2,15,16], it is suitable to introduce its rate function,

λðtÞ ¼ −
1

N
log½LðtÞ�; ð3Þ

which, in contrast to LðtÞ, is intensive in the thermody-
namic limit. As in Fig. 1, quantum quenches from fully
polarized initial states,

jψ0i ¼ ⊗
L

l¼1
j →ilj →il ¼

1ffiffiffi
2

p ½j↑il þ j↓il�; ð4Þ

will be considered, i.e., ground states of initial
Hamiltonians H0 ¼ Hðh → ∞Þ.
It is the aim of the present work to relate the DQPTs and

therefore the nonanalytic structure of λðtÞ to scaling in the
vicinity of unstable fixed points. For that purpose, it will be
shown that Loschmidt amplitudes in Eq. (1) can be mapped
onto equilibrium partition functions of classical Ising
models at complex couplings for the considered parameter
regime. In order to address scaling and universality, real-
space decimation RGs, exact in 1D and approximate in 2D,
are formulated. The most important result of the analysis of
the RG equations is that DQPTs are critical points flowing
to unstable fixed points of equilibrium Ising models
implying universality and scaling. Notice that singular
behavior can also occur in the Fourier transform of the
Loschmidt amplitude [15–18], which, however, is of
different nature.
Equilibrium partition functions.—Let us first consider

vanishing final transverse fields with a Hamiltonian
Hðh ¼ 0Þ ¼ −J

P
hlmiσ

z
lσ

z
m. Then, as will be outlined

below, the Loschmidt amplitude GðtÞ becomes

GðtÞ ¼ 1

2L
Tr

�
eit
P

hlmiJlmσ
z
l σ

z
m

�
; ð5Þ

with Tr denoting the trace over Hilbert space. Remarkably,
this is nothing but the equilibrium partition function of a
classical Ising model at complex coupling iJ, inverse
temperature t, and gðtÞ ¼ −N−1 log½GðtÞ� is the associated
free-energy density (apart from an overall temperature
normalization). The above identification follows by using
two properties. First, jψ0i in Eq. (4) can be written as an
equally weighted superposition of all spin configurations in
the σzl basis. Second, Hðh ¼ 0Þ does not induce spin flips
and therefore only the diagonal matrix elements contribute,
which is nothing but the trace. In analogy to the equilibrium
case, it will be suitable to introduce dimensionless cou-
plings

K ¼ iJt; K⊥ ¼ iJ⊥t; ð6Þ

which in the present nonequilibrium context, however, are
now complex. Notice that the above identification of GðtÞ
with a partition function is independent of dimension. In
the following, the 1D and 2D cases will be considered
because they allow for exact solutions.
One dimension.—The 1D Ising model can be solved on

the basis of the transfer matrix T [1]:

GðtÞ ¼ trTL; T ¼ 1

2

�
eK e−K

e−K eK

�
; ð7Þ

with tr denoting the trace over a basis of the 2 × 2 matrix
problem. The matrix T has two eigenvalues νc ¼ chðKÞ
and νs ¼ shðKÞ, with shðKÞ and chðKÞ the hyperbolic sine
and cosine, respectively. For L → ∞, GðtÞ is dominated by
the eigenvalue of largest magnitude, i.e., GðtÞ ¼ νL with
ν ¼ νc if jνcj > jνsj and ν ¼ νs otherwise. Note that ν can
switch between νs and νc, yielding a nonanalytic structure
in λðtÞ ¼ −2Re½logðνÞ�. This switching of the dominant
eigenvalue is the underlying origin of the DQPTs in 1D
Ising models, as has also been seen in XXZ chains [7]. The
critical times tn of the DQPTs are given by the condition
jνcj ¼ jνsj, i.e., tn ¼ πð2nþ 1Þ=ð4JÞ, with n ∈ Z; com-
pare also Ref. [2]. In equilibrium, jνcj ¼ jνsj can be
satisfied only in the limit of zero temperature T ¼ 0.
When discussing the anticipated RG procedure below, it
will be shown that this correspondence is not accidental but
rather has a very profound origin.
Having established the presence of DQPTs, it is now the

aim to address the question of scaling and universality.
For that purpose, a RG scheme in complex parameter space
will now be introduced. RG transformations in complex
parameter space have been previously studied in the
context of the standard model [19,20], as well as for
equilibrium partition functions in complex parameter
spaces [21,22]. Eliminating every second spin via decima-
tion [21–23], an exact RG transformation can be formu-
lated yielding the following recursion relation [24]:

thðK0Þ ¼ th2ðKÞ: ð8Þ

As a result, it is found that the RG has two fixed points,
K� ¼ 0;∞, corresponding to the equilibrium ones at
infinite and zero temperature even when K is complex
initially. For K with jKj ≪ 1, this gives K0 ¼ K2, implying
that the fixed point K� ¼ 0 is stable. For K ¼ K� þ δK, in
the vicinity of K� ¼ ∞ one obtains that δK0 ¼ 2δK ¼
bλδK, with b ¼ 2 the change in length scale due to the
decimation and λ ¼ 1 the associated anomalous dimension.
Thus, it is found here that the fixed point K� ¼ ∞ is
unstable as in the equilibrium case. But remarkably, this is
not necessarily true for initial couplings beyond the linear
regime. In particular, the DQPTs at times tn map onto the
K� ¼ ∞ fixed point after precisely two RG steps. Times t
with weak deviation τ ¼ ðt − tcÞ=tc from a DQPTat tc map
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after two RG steps onto the linear regime of the unstable
fixed point. Using that λ ¼ 1, one can then directly deduce
the scaling form of gðtÞ:

gðτÞ ∼ jτjd=λΦ� ¼ jτjΦ�; τ ¼ t − tc
tc

; ð9Þ

with dimension d ¼ 1 andΦ� a constant that may differ for
τ≶0. Remarkably, this is indeed the scaling behavior that is
found from the exact solution of gðtÞ in the vicinity of the
DQPTs [2]; compare also Fig. 1. Therefore, the nonanalytic
behavior of gðtÞ can now be attributed to an unstable fixed
point of a RG, allowing one to extend fundamental
concepts such as robustness, scaling, and universality to
the nonequilibrium regime on general grounds. Notice that
robustness has recently been established for particular cases
[5,6]. In the present work, a specific initial state and final
Hamiltonian have been considered so far. However, the
identification of DQPTs with unstable fixed points allows
one to conclude that weak symmetry-preserving perturba-
tions do not change the universal properties. In the
following, this will now be demonstrated by incorporating
a weak transverse field in the final Hamiltonian.
Transverse fields.—For h=J ≪ 1, the field part V ¼

−h
P

lσ
x
l of Eq. (2) can be eliminated using standard

time-dependent perturbation theory [24]. To first order
in h=J one obtains that GðtÞ ¼ 2−LTreH̄ can again be
represented in terms of an effective classical Ising model H̄,
but now including also next-to-nearest neighbor (NNN)
interactions [24]:

H̄ ¼ K
X
l

σzlσ
z
lþ1 þ G

X
l

σzlσ
z
lþ2; ð10Þ

with G ¼ −iht=2þ ih sinð4JtÞ=ð8JÞ and a modified cou-
pling K ¼ iJtþ h½1 − cosð4JtÞ�=ð4JÞ. Within the same
decimation RG as used for the NN case, let us eliminate
every second lattice site. Based on a cumulant expansion
[26] for the perturbative NNN couplings, one obtains to
first order in G [24]

K0 ¼ PþG

�
1þ 1 − e−4P

2

�
; G0 ¼ G

1 − e−4P

4
;

ð11Þ
with thðPÞ ¼ th2ðKÞ the solution at h ¼ 0; see Eq. (8). This
set of RG equations exhibits two fixed points,
ðK�; G�Þ ¼ ð0; 0Þ; ð∞; 0Þ. In the vicinity of the unstable
fixed point K� ¼ ∞, we get δK0 ¼ 2δK þ 3G=2 and
G0 ¼ G=4, and therefore weak fields h=J ≪ 1 constitute
an irrelevant perturbation. This is in perfect agreement with
the exact solution where it can be seen that h=J > 1 is
necessary to destroy the DQPTs [2]; see also Fig. 1.
Moreover, the scaling properties of the DQPTs are invariant
under a slight modification of the initial state by taking the
ground state for an initial transverse field 1 < h=J < ∞.

Therefore, it is expected that the main results are also valid
beyond the case of a fully polarized state studied here.
Two dimensions.—The partition function of the 2D Ising

model can be solved exactly [27–29]. For the case of
complex K this is still possible, which yields

gðtÞ ¼ −
1

2
log½2 sinhðKÞ� −

Z
π

−π

dq
4π

sðεqÞεq; ð12Þ

with εq the solution of the equation

chðεqÞ ¼ chð2K⊥Þchð2K̄Þ − shð2K⊥Þshð2K̄Þ cosðqÞ;
ð13Þ

and sðxÞ ¼ sgn½RðxÞ� returns the sign of its argument’s real
part. Here, K̄ is given by the condition thðKÞ ¼ expð−2K̄Þ,
with thðKÞ ¼ shðKÞ=chðKÞ.
In Fig. 2, the dynamics of λðtÞ is shown for different

anisotropies j⊥ ¼ J⊥=J. For j⊥ ≪ 1, DQPTs are found at
times tn ¼ ð2nþ 1Þπ=ð4JÞ, which are solely controlled by
the coupling J. Indeed, it will be shown below using a
perturbative RG that a weak coupling j⊥ ≪ 1 represents an
irrelevant perturbation. If, however, j⊥ ¼ 1, a drastic
change in the nature of the DQPToccurs with a logarithmic
nonanalyticity:

gðτÞ ∼ τ2 logðjτjÞ; ð14Þ
which is illustrated in Fig. 2. Notice the remarkable
similarity of the scaling behavior in Eq. (14) with the
equilibrium free energy at the equilibrium critical point of
the 2D Ising model when τ denotes the relative temperature
distance to the critical point [30].
As opposed to 1D, it is not possible to derive a closed set

of exact RG recursion relations for the 2D case. However,
in the limit of strong anisotropy, J⊥ ≪ 1, an approximate
RG can be constructed. For that purpose, let us decompose
the square lattice into even and odd rows. The odd rows can

(a) (b) (c)

FIG. 2 (color online). Dynamics of λðtÞ in the 2D Ising model.
(a) For strong anisotropies, j⊥ ¼ J⊥=J ≪ 1, the weak coupling
J⊥ represents an irrelevant perturbation and the critical proper-
ties, i.e., the kinks, are identical to the 1D case. (b) For the
isotropic 2D Ising model, the nonanalytic structure changes to a
logarithmic singularity, which is illustrated in the second deriva-
tive shown in (c).
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be eliminated perturbatively using a cumulant expansion
[26], which in the present case is controlled via jK⊥j ≪ 1.
To second order in K⊥, one obtains [24]

K0 ¼ K þ 2QK2⊥; K0⊥ ¼ K2⊥: ð15Þ

Here,Q ¼ thðKÞ if jνcj > jνsj andQ ¼ 1=thðKÞ otherwise,
with νc and νs the eigenvalues of the 1D T matrix; see
Eq. (7). For K⊥ < 1 initially, K�⊥ ¼ 0 is always
approached, implying that K⊥ is an irrelevant perturbation.
As a consequence, the fixed point describes a set of
uncoupled 1D chains. Indeed, λðtÞ displays kinks; see
Fig. 2. In this context, let us therefore introduce an effective
dimension d� which takes a value d� ¼ 1 for the 1D system
and also for the strongly anisotropic 2D one.
Decreasing the anisotropy makes the RG transformation

in Eq. (15) less and less controlled. In particular, the
isotropic point J⊥ ¼ J, and its associated logarithmic
singularity of Eq. (14), is not accessible in this way.
Thus, within the current methodology, a rigorous identi-
fication of this DQPTwith a fixed point is not possible. The
particular scaling form of gðtÞ in Eq. (14), however,
suggests that the DQPT in the isotropic limit is controlled
by the unstable fixed point of the 2D Ising model. A further
argument supporting this hypothesis is given below when
discussing the power-law scaling of the spin correlations.
Spin correlations.—Having unraveled scaling and uni-

versality of the Loschmidt amplitude, the major challenge
now is to connect to local observables. Although for
particular quenches out of symmetry-broken phases, such
a connection has been established [3], a general under-
standing, however, is still lacking. As the present DQPTs
are associated with the equilibrium critical points of Ising
models, it is a question of fundamental importance of how
the divergent equilibrium correlation length becomes
manifest in the nonequilibrium dynamics. Because of
Lieb-Robinson bounds it is, of course, not possible to
build up diverging correlations within a finite time interval.
Nevertheless, it will now be demonstrated that the under-
lying DQPTs are responsible for the buildup of NN spin
correlations within the rows:

CzðtÞ ¼
1

L

X
lm

hσzl;mðtÞσzl;mþ1ðtÞi: ð16Þ

In Fig. 3 the dynamics of CzðtÞ is shown. Notice that the
case h ¼ 0 constitutes a singular limit because there CzðtÞ
is a constant of motion such that CzðtÞ ∝ h=J for h=J ≪ 1
and CzðtÞJ=h becomes a universal function independent of
h in the limit h → 0. As one can see, the spin correlations
develop a maximum in the vicinity of the DQPT at tc ¼
π=ð4JÞ with a slope, however, that differs for the isotropic
2D case compared to those with effective dimension
d� ¼ 1. This is associated with a different power-law
scaling that can be quantified via

χðτÞ ¼ J
h
½CzðtcÞ − Czðtc þ τÞ�∝h~0τ2d� ; ð17Þ

see Fig. 3. This scaling depends only on the effective
dimension d� of the DQPT and therefore only on the
DPQT’s universality class if we assign d� ¼ 2 for the
DQPT satisfying the scaling of Eq. (14) for gðtÞ equivalent
to the critical point of the 2D Ising model. The numerical
data in Fig. 3 have been obtained from exact diagonaliza-
tion (ED) using a Lanczos algorithm with full reorthogon-
alization [31].
Trapped ions.—This dynamical scaling can be observed

experimentally in systems of trapped ions within the
current technology, as will be outlined in the following.
Fully polarized states as required in Eq. (4) can be
initialized with a high fidelity [32]. Coherent time evolution
of transverse-field Ising Hamiltonians has been demon-
strated both for 1D [32–34] and 2D [35]. The Ising
couplings, however, are not of NN type but rather long
ranged, Jlm ¼ J=jrl − rmjα, with 0 ≤ α ≤ 3 [36] and rl the
location of the ion in real space. In Fig. 3, numerical ED
data of χðτÞ for the long-range potentials is included for the
dipolar case α ¼ 3 with lattice spacing a ¼ 1. Here, open
boundary conditions have been used and χðτÞ includes only
those NN correlations that do not contain spins at the
boundary to minimize boundary effects. As the simulations
indicate, the spin correlations also obey the dynamical
scaling of Eq. (17), making it accessible within current
trapped ion technology.
Conclusions.—It has been shown that DQPTs in 1D and

2D Ising models are controlled by unstable fixed points of
complex RG transformations, opening the possibility to
apply the concepts of scaling and universality to the out-of-
equilibrium regime. Importantly, this leads to a dynamical

(a) (b)

FIG. 3 (color online). (a) Dynamics of CzðtÞ for h=J ¼ 0.1 on a
N ¼ 5 × 5 square lattice for different anisotropies j⊥. (b) Power-
law scaling of χðτÞ in the vicinity of the DQPT. Brown curves are
on the NN square lattice for j⊥ ¼ 1=8, with d� ¼ 1 (upper curve),
and the isotropic limit j⊥ ¼ 1, with d� ¼ 2 (lower curve). The
dashed blue curves for the long-range Ising models relevant for
trapped ions in 1D (upper curve) and in 2D (lower curve) are also
included. As a reference, quadratic and quartic power laws are
also shown, demonstrating the dynamical scaling of Eq. (17).

PRL 115, 140602 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

2 OCTOBER 2015

140602-4



scaling of the spin correlations which depends only on the
universality class of the underlying DQPT and which is
accessible experimentally in systems of trapped ions.
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greatefully acknowledged. This work has been supported
by the Deutsche Akademie der Naturforscher Leopoldina
under Grants No. LPDS 2013-07 and No. LPDR 2015-01.
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