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We propose a scheme for realizing lattice potentials of subwavelength spacing for ultracold atoms. It is
based on spin-dependent optical lattices with a time-periodic modulation. We show that the atomic motion
is well described by the combined action of an effective, time-independent lattice of small spacing, together
with a micromotion associated with the time modulation. A numerical simulation shows that an atomic gas
can be adiabatically loaded into the effective lattice ground state, for time scales comparable to the ones
required for adiabatic loading of standard optical lattices. We generalize our scheme to a two-dimensional
geometry, leading to Bloch bands with nonzero Chern numbers. The realization of lattices of
subwavelength spacing allows for the enhancement of energy scales, which could facilitate the achieve-
ment of strongly correlated (topological) states.
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Optical lattices have allowed experiments on ultracold
atomic gases to investigate a large range of lattice models
of quantum many-body physics [1]. Their development led
to the realization of strongly correlated states of matter,
such as bosonic and fermionic Mott insulators, and low-
dimensional gases [2]. In its simplest form, an optical
lattice consists of the optical dipole potential associated
with a standing wave of retroreflected laser light. It can be
described as a periodic potential VðxÞ ¼ U0 cos2ðkxÞ, of
spatial period d ¼ λ=2, where λ is the laser wavelength and
k ¼ 2π=λ. More complex optical lattices, such as super-
lattices [3,4] or two-dimensional honeycomb lattices [5,6],
can be generated with suitable laser configurations. The
recoil energy Er ¼ h2=ð8md2Þ, where h is Planck’s con-
stant and m is the atom mass, sets the natural energy scale
for elementary processes, such as atom tunneling between
neighboring lattice sites, as well as the temperature range
T ≲ Er=kB ∼ 100 nK, typically required for quantum
degeneracy.
For a large class of models, the physical behavior is

dictated by processes associated with even much smaller
energies, such as superexchange or magnetic dipole
interactions [1]. The associated temperature scales remain
out of reach in current experiments. In order to circumvent
this limitation, it is desirable to find novel schemes for
generating optical lattices with spacing deff ≪ λ, in order
to enhance the associated energy scale Eeff

r ¼ h2=ð8md2effÞ
[7]. Schemes have been proposed to generate lattices
of subwavelength spacing, based on multiphoton optical
transitions [8] or on adiabatic dressing of state-dependent
optical lattices [7]; the realization of lattices with
spacing deff ¼ λ=4 was reported in Ref. [9]. An interes-
ting alternative would be to trap atomic gases in the

electromagnetic fields of nanostructured condensed-
matter systems [10–12].
In this Letter, we propose a novel scheme leading to

lattices of spacing deff ¼ d=N, with N being an arbitrary
integer, based on spin-dependent lattices with time-periodic
modulation. In the regime of large modulation frequency
[13–16], the atom dynamics is governed by an effective
static periodic potential of spacing deff , with an additional
micromotion. This description is confirmed by a numerical
simulation, which shows the possibility of loading adia-
batically the ground state of the effective lattice and to
perform Bloch oscillations. We discuss the extension of
the scheme to two-dimensional lattices with nontrivial
topology. Lattices with artificial magnetic fields, generally
leading to topological bands, were recently realized in
experiments, with standard lattice spacing [17]. For those
systems, increasing the energy scale using short-spacing
lattices could prove important for creating strongly corre-
lated states such as fractional Chern insulators [18,19].
A basic scheme of our method is pictured in Fig. 1.

Consider a periodic potential VðxÞ of period d, which is
abruptly shifted by the distance d=N at stroboscopic
times tn ¼ ðn=NÞT, n ∈ Z, leading to a time-periodic
potential Vðx; tÞ of period T. Provided that T is much
smaller than typical time scales of atomic motion, the atoms
experience an effective time-averaged potential VeffðxÞ ¼R
Vðx; tÞdt=T. A simple calculation shows that VeffðxÞ is

given by the sum of all harmonics of the potential VðxÞ,
whose orders are multiples of N [20]. The effective
potential VeffðxÞ is thus spatially periodic, of spatial period
deff ¼ d=N.
Conventional optical lattices present a spatial modulation

proportional to the intensity pattern of interfering light
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waves, which exhibit spatial frequencies of at most twice
the light momentum k. Thus, applying the stroboscopic
scheme in Fig. 1 to these potentials could not lead to
effective lattices of period deff < λ=2. This restriction does
not apply to spinful particles subjected to spin-dependent
optical lattices. As an illustration, consider a spin-1=2
particle evolving in the potential VðxÞ ¼ VL cosð2kxÞσzþ
VBσx, where σu (u ¼ x; y; z) are the Pauli matrices. In a
dressed state picture, the atom may follow adiabatically the
state of lowest energy V−ðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
L cos

2ð2kxÞ þ V2
B

p
.

As this potential exhibits harmonics of the spatial fre-
quency 2k of all orders, the lattice spacings achievable by
applying the stroboscopic scheme to V−ðxÞ can be made
arbitrarily small.
We describe in the following a modified, more practical

version of this scheme, which consists of a spin-dependent
optical lattice with smooth temporal variations, given by

Vðx; tÞ ¼ VL cosð2kx − ΩtÞσz þ VB cosðNΩtÞσx: ð1Þ

This potential satisfies Vðxþ d=N; tþ T=NÞ ¼ Vðx; tÞ,
with d ¼ π=k; thus, it can be viewed as a continuous
version of the stroboscopic scheme. Understanding the
physical effects of the potential (1) falls within the
description of time-periodic Hamiltonian systems
[13–16]. Following Ref. [15], we describe the dynamics
of an atom between the times ti and tf as

Uðti → tfÞ ¼ e−iKðtfÞe−ði=ℏÞðtf−tiÞHeffeiKðtiÞ; ð2Þ

where we introduce a time-independent effective
Hamiltonian Heff and a time-periodic kick operator KðtÞ.
The three operators in Eq. (2) describe, from right to left,
the role of the initial phase of the Hamiltonian at time ti,
the evolution from ti to tf according to a stationary
Hamiltonian, and the micromotion related to the final
phase of the Hamiltonian at time tf.
The expressions for the effective Hamiltonian Heff

and the kick operator KðtÞ can be calculated through a
perturbative expansion in powers of 1=Ω; see Refs. [14,15].
To lowest order, this yields

Heff ¼
p2

2m
þ VeffðxÞ; ð3Þ

VeffðxÞ ¼
Ueff

2
cosð2NkxÞσx;

Ueff ¼
2VB

N!

�
VL

ℏΩ

�
N
; ð4Þ

KðtÞ ¼ −VL

ℏΩ
sinð2kx −ΩtÞσz þ

VB

NℏΩ
sinðNΩtÞσx: ð5Þ

The effective potential (4), which describes a periodic
potential of depth Ueff and spatial period deff ¼ d=N, was
derived under the assumption that N is an even integer (a
similar potential is found for N odd). The expression (4)
has been obtained based on a Born-Oppenheimer approxi-
mation, in which the kinetic energy term is neglected and
one calculates the effective potential for a given position x,
treating internal degrees of freedom (σj operators) quantum
mechanically. One finds that the terms neglected here
are smaller than those given in Eq. (4), by a factor
Er=ðℏΩÞ ≪ 1. Furthermore, this approximation is vali-
dated by a direct comparison with the full quantum treat-
ment (see below). In the Supplemental Material [20] we
show that the perturbative expansion can be resumed, with
respect to either the variable VL=ðℏΩÞ or VB=ðℏΩÞ. There,
we also discuss the generalization of this modulation
scheme to an arbitrary spin F, through the substitution
σu → 2Fu [20].
In order to test the validity of the effective Hamiltonian

(3), we performed a numerical study of the full time-
periodic Hamiltonian using the Floquet formalism. Since
the Hamiltonian H is invariant under the symmetries
T x∶ x → xþ d and T t∶ t → tþ T, we look for eigen-
states written as Bloch-Floquet wave functions ψq;ωðx; tÞ ¼
eiðqx−ωtÞuq;ωðx; tÞ, where uq;ωðx; tÞ is d periodic in x
and T periodic in t [24,25]. Eigenstates are labeled
by their quasimomentum −k < q ≤ k and quasienergy
0 ≤ ℏω < ℏΩ. An example of the band structure calculated
numerically for N ¼ 4 is plotted in Fig. 2(a). The band
structure exhibits gap openings once every four bands, at
the momenta Nkp, where p ∈ Z�, as expected for a lattice
of spacing d=N.

FIG. 1 (color online). Stroboscopic scheme for engineering
short-spacing lattices, illustrated in the case N ¼ 4. We make use
of a periodic potential Vðx; tÞ of spatial period d that is shifted by
the distance d=N after every time step of duration T=N (the blue
curves). The effective potential VeffðxÞ (the red curve), resulting
from time averaging, exhibits a spatial period deff ¼ d=N.
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The band structure can be unfolded, making use of the
additional symmetry T �∶ x → xþ d=N; t → tþ T=N. As
explained in the Supplemental Material [20], eigenstates
associated with the symmetries T x, T t, and T � can be
written as ψ ~q;ωðx; tÞ ¼ eið ~qx−ωtÞv ~q;ωðx; tÞ, where v ~q;ωðx; tÞ
is d=N periodic in x and 2π periodic in ðkx − ΩtÞ. We
show the band structure calculated within this formalism
in Fig. 2(b), which is very close to that expected for a lattice
of spacing d=N and depth Ueff ≃ 10.9Eeff

r [26].
The practical relevance of the short-spacing lattice

described above is based on the ability to load atoms into
the ground state of the effective potential (4). The analysis
of this loading protocol requires special care, as the
effective-Hamiltonian approach inherent to Eq. (2) assumes
a constant lattice depth [15]. In fact, we find that the
concept of the effective Hamiltonian can be modified so as
to describe the time evolution under a ramp of the moving-
lattice depth VL; see Ref. [20]. We simulate the lattice
loading from a numerical calculation of the full dynamics
of an atomic wave packet under the action of the potential
(1). Starting from a Gaussian wave packet, spin polarized
along x, we solve the Schrödinger equation, discretized in
space and time, with a lattice depth VL slowly ramped up
for a duration tramp. As shown in Fig. 3(a), a ramp duration
tramp ¼ 20ℏ=Eeff

r leads to a state with strong spatial
modulations of spacing d=N, as expected for a wave
packet prepared in the lowest band of the effective lattice
(4). The calculated population in the effective lowest band
is 93%, close to the value expected with standard optical
lattices for such a ramp duration. In the Supplemental
Material [20] we analyze the momentum distribution,

which corresponds to the one expected for the ground
state of the effective lattice, slightly modified by the
micromotion.
The system description as an effective d=N lattice is also

supported by a numerical simulation of Bloch oscillations.
We calculate the action of a linear potential −Fx applied
to the state obtained after the lattice loading. As shown
in Figs. 3(b) and 3(c), the wave packet undergoes Bloch
oscillations, revealed as real-space oscillations of its center
of mass. Both the amplitude and the period of this
oscillation agree well with those expected for an effective
lattice of period d=N and depth Ueff inferred from band
structure calculations.
The potential Vðx; tÞ written in Eq. (1) corresponds

to the sum of a time-modulated magnetic field and a
spin-dependent optical lattice moving at the velocity
vlatt ¼ Ω=ð2kÞ. In the above discussion we considered
the effect of this potential as an effective static optical
lattice. An alternative view is obtained in the frame of

FIG. 2 (color online). Band structure of a dynamic optical
lattice of spacing deff ¼ d=4, corresponding to the parameters
N ¼ 4, and VL ¼ VB ¼ ℏΩ ¼ 200Eeff

r . In (a), we make use of
the spatial and temporal translational symmetries T x, T t and
label the eigenstates by their quasimomentum −k ≤ q < k and
quasienergy −ℏΩ=2 ≤ ℏω < ℏΩ=2. The Bloch-Floquet bands
can be unfolded using the additional symmetry T �, leading to the
band structure in (b), indexed by the modified quasimomentum
−4k ≤ ~q < 4k. The unfolding of the band structure can be
followed from the different coloring of successive bands.

FIG. 3 (color online). (a) Atomic density of a wave packet
loaded into a dynamic lattice of spacing deff ¼ d=4. We start from
a Gaussian wave packet, spin polarized along x, of wave function
ψðx; t ¼ 0Þ ¼ exp½−x2=ð2σ2Þ�, with σ ≃ 1.4d (the red dashed
line). The lattice depth VL is slowly ramped up for a duration
tramp ¼ 20ℏ=Eeff

r from VL ¼ 0 to VL ¼ V0
L, and lattice param-

eters N ¼ 4, V0
L ¼ VB ¼ ℏΩ ¼ 200Eeff

r . The atom density after
loading is spatially modulated, with a period d=4 (the blue line).
(b) Evolution of the density distribution during Bloch oscilla-
tions, calculated for the dynamic lattice parameters of (a), and for
a force F ¼ Weff=ð8deffÞ, where Weff ≃ 0.06Eeff

r is the expected
bandwidth of the lowest band for Ueff ¼ 10.9Eeff

r . (c) Evolution
of the center-of-mass position during Bloch oscillations, calcu-
lated for a standard optical lattice of depth Ueff ¼ 10.9Eeff

r (the
red dashed line), and for the dynamic optical lattice (the blue
line). The time and spatial coordinates are plotted in units of the
ideal Bloch period τB ¼ 2Nℏk=F and amplitude Weff=F.
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reference moving at the velocity v ¼ vlatt, where the
potential Vðx0 ¼ x − vt; tÞ consists of the sum of a
modulated magnetic field and a very deep static lattice
VL cosð2kx0Þσz, with VL ∼ ℏΩ ≫ Ueff . Both points of
view can be reconciled by a proper interpretation of the
band structure, as illustrated for the case N ¼ 2 in Fig. 4.
Among the eigenenergies ω ð ~qÞ calculated numerically in
the laboratory frame v ¼ 0, we identify the Bloch bands
corresponding to a static effective lattice of spacing deff .
The eigenenergies ω0 ð ~qÞ corresponding to a frame of
reference moving at a velocity v can be deduced from
those in the laboratory frame using the relation
ω0 ¼ ω − ~qv=ℏ. In the frame moving at v ¼ vlatt, we
observe Bloch bands corresponding to a very deep static
optical lattice of period d.
We now consider a 2D extension of our scheme. The

time-dependent part of the Hamiltonian is taken as

Vðr; tÞ ¼ VL cosð2ke1 · r −Ω1tÞσz þ VB cosðNΩ1tÞσx
þ VL cosð2ke2 · r − Ω2tÞσx þ VB cosðNΩ2tÞσy
þ VL cosð2ke3 · r − Ω3tÞσy þ VB cosðNΩ3tÞσz;

where the unit vectors e1;2;3 have directions as represented
in Fig. 5. For a suitable choice of the frequencies Ω1;2;3
[28], each line of the equation above can be treated
individually, which results in an effective potential of the
form [29]

VeffðrÞ≃Ueff

2
½cosð2Nke1 · rÞσx þ cosð2Nke2 · rÞσy

þ cosð2Nke3 · rÞσz�; ð6Þ

where N is taken to be an even integer. These couplings are
illustrated in quasimomentum space in Fig. 5(a). Following
Ref. [30], the topological Chern number associated with the
lowest energy band can be readily obtained from these
couplings. Indeed, the Chern number measures the flux of
the Berry curvature ΩðqÞ over the entire (momentum-
space) unit cell:

νCh ¼
1

2π

Z
unit cell

ΩðqÞd2q; ð7Þ

which can be directly evaluated by calculating the phases
accumulated by a state as it performs a loop around the
triangular subcells [30]. For the effective lattice described
by Eq. (6), each unit cell is constituted of four triangular
subcells, and we find an accumulated phase of π=2
within each of them [see Fig. 5(b)]. In this configuration,
the Chern number of the lowest band is given by
νCh ¼ ð1=2πÞ × 4 × ðπ=2Þ ¼ 1. Generally, the reasoning
above is valid only in the weak-binding regime; however,
for the coupling (6), νCh is unchanged for all values of Ueff .
Note that the size of the unit cell in real space scales as
1=N2; we thus expect the flux density to be increased by a
factor of N2 compared to standard optical lattices.
The method discussed above is based on applying strong

spin-dependent optical lattices, for which Lanthanide atoms
would be most suited for a practical implementation.

FIG. 4 (color online). Band structure corresponding to the
dynamic lattice for the parameters N ¼ 2, VL ¼ VB ¼ ℏΩ ¼
10Eeff

r . The panels correspond to different frames of reference, of
velocity v ¼ 0 (left panel) and v ¼ vlatt ¼ Ω=ð2kÞ (right panel).
The blue points correspond to the band structure of an optical
lattice of spacing deff ¼ d=N and depthUeff ≃ 2Eeff

r , at rest in the
laboratory frame. The red dots correspond to the band structure of
an optical lattice of spacing d and depth U ≃ 74Er (≃9Ueff ), at
rest in the frame of velocity v ¼ vlatt [27].

FIG. 5 (color online). (a) Momentum-space representation of
the effective couplings in Eq. (6), illustrated as arrows of length
2Nk, oriented along the unit vectors �ei (i ¼ 1; 2; 3), and
proportional to Pauli matrices. Quantum states are represented
in the basis {jþzi (the filled dots), j−zi (the circles)}. (b) Phase
accumulated around a triangular subcell of the k-space lattice.
Because of the internal-state degree of freedom, the unit cell of
the lattice is formed by four triangular subcells. The same phase
of ϕ ¼ π=2 is found to be accumulated around all subcells,
indicating that the lowest energy band is associated with a
nontrivial Chern number νCh ¼ 1 [30].
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Indeed, the optical lattices could be generated using laser
light close to a narrow optical transition, which would lead
to deep, spin-dependent lattices with negligible Rayleigh
scattering effects (for Dy atoms, one can achieve ratios
ℏΓscattering=VL ∼ 10−7) [31–33].
In conclusion, we introduced a novel scheme to engineer

spatially periodic atom traps of subwavelength spacing,
based on the application of spin-dependent optical lattices.
A natural extension of this work would be to include
interactions between atoms in the effective lattice descrip-
tion, and to understand whether micromotion plays a
significant role in scattering properties [34–36]. This aspect
will play a central role for investigating quantum many-
body physics with short-spacing lattices.
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