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The large available Hilbert space and high coherence of cavity resonators make these systems an
interesting resource for storing encoded quantum bits. To perform a quantum gate on this encoded
information, however, complex nonlinear operations must be applied to the many levels of the oscillator
simultaneously. In this work, we introduce the selective number-dependent arbitrary phase (SNAP) gate,
which imparts a different phase to each Fock-state component using an off-resonantly coupled qubit. We
show that the SNAP gate allows control over the quantum phases by correcting the unwanted phase
evolution due to the Kerr effect. Furthermore, by combining the SNAP gate with oscillator displacements,
we create a one-photon Fock state with high fidelity. Using just these two controls, one can construct
arbitrary unitary operations, offering a scalable route to performing logical manipulations on oscillator-
encoded qubits.
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Traditional quantum information processing schemes
rely on coupling a large number of two-level systems
(qubits) to solve quantum problems [1]. However, quantum
information is fragile and susceptible to noise and
decoherence processes, which implies the need for error-
correction protocols. Many of these protocols have been
proposed [2], yet all require significant resources by
constructing a single logical qubit consisting of many
physical qubits. A drawback of this approach is that logical
gate operations become more complicated because multiple
physical systems need to be addressed. Alternatively, one
could encode one bit of quantum information within a
higher-dimensional Hilbert space, such as a propagating
mode (i.e., coherent light) or a stationary mode in a cavity
[3]. Several proposals exist to use this larger Hilbert space
for redundant encoding to allow quantum error correction.
Some of these are very similar to multiqubit based codes
[4,5] and others are based on superpositions of coherent
states [6,7], or so-called cat codes.
A major complication for quantum computation with

harmonic oscillators, however, is their linear energy
spectrum and thus degenerate transitions, making quantum
control difficult. This problem can be resolved by coupling
the harmonic oscillator to a qubit, giving the system a
controllable nonlinearity. In the case of a qubit that can be
tuned into resonance with an oscillator, one can create
arbitrary quantum states by swapping excitations from
the qubit to the cavity mode [8–10]. However, there are
several advantages of having a far off-resonantly, or
dispersively, coupled qubit instead of a resonant one.
Full microwave control without the requirement of a
flux-bias line is the most important factor experimentally,
as it decreases the sensitivity to flux noise and improves
scalability.

It has been shown that universal control is possible using
a single nonlinear term in addition to linear controls [11],
but no efficient construction has been provided and so far
there have been no experimental demonstrations. Using the
dispersive nonlinearity, some special operations can be
realized efficiently, for example, mapping an arbitrary qubit
state to a superposition of coherent states in a cavity [12].
Here we extend the set of operations in the dispersive
regimewith the selective number-dependent arbitrary phase
or SNAP gate, which manipulates the phase of one or more
photon-number states. We also show that photon-number
populations can be controlled by combining the SNAP gate
with ordinary displacements of the oscillator. In a related
work we prove that these tools provide arbitrary control
and describe a constructive method to generate unitary
operations [13].
We use a circuit quantum electrodynamics architecture

[14,15] with two cavities coupled to one superconducting
transmon qubit [16,17]. One of the cavities is used as a
long-lived storage cavity, the other as a fast readout
resonator [18]. The latter is used as an ancillary system
and will not be included in our description of the quantum
state; from here on, the word cavity will refer to the storage
cavity. The measurement setup and sample design are
described in detail in Ref. [12]; sample parameters for this
experiment are in the Supplemental Material [19]. When
the qubit-cavity detuning is much larger than their coupling
strength, the system can be described using the dispersive
Hamiltonian [20]:

H=ℏ ¼ ωcâ†âþ ωqjeihej þ χâ†âjeihej; ð1Þ

with ωc and ωq the cavity and qubit transition frequency,
respectively, â the annihilation operator of a cavity
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excitation, χ the dispersive shift, and jeihej the qubit
excited-state projector. Higher-order terms are usually
ignored, but in this work we quantify the Kerr term
ðK=2Þâ†2â2 (see Ref. [21]), the corrections to the disper-
sive shift ðχ0=2Þâ†2â2jeihej, ðχ00=6Þâ†3â3jeihej, and the
correction to Kerr ðK0=6Þâ†3â3.
We are operating in the number-split regime [20,22,23]

where the qubit frequency shift per photon in the cavity, χ,
is larger than both the qubit and cavity transition line-
widths. This results in a spectrum as shown in Fig. 1(a) and
means that the qubit can be addressed selectively if and
only if there are n photons in the cavity. It is natural to
represent the cavity state in the Fock basis
jψci ¼

P∞
n¼0 cnjni. We can depict this state as a set of

phasors with length jcnj ¼
ffiffiffiffiffiffiffiffiffiffi
pðnÞp

, where pðnÞ is the
probability that the cavity is populated by n photons,
and argðcnÞ ¼ θn the associated quantum phase.
Figure 1(b) shows an example of this graphical way to
represent a pure state. The area of the colored circle can be
directly interpreted as the probability pðnÞ. The full system
state is given by jψi ¼ P jψci ⊗ jψqi, and we use the
qubit as an ancilla to manipulate the state of the cavity.
The SNAP gate we propose here consists of a geometric

phase, similar to the Berry phase [24], applied selectively to
the nth Fock-state component by doing two rotations on the
qubit, using a weak drive (Rabi frequency Ω ≪ χ) at
frequency ωd ¼ ωq þ nχ. If the two pulses are performed
along different axes, the trajectory on the Bloch sphere
encloses a solid angle, which corresponds to the acquired
geometric phase. The qubit itself should start and end in the
ground state, effectively disentangling the qubit and cavity
after each operation, such that undesired effects due to
qubit relaxation and decoherence are minimized before and
after the SNAP gate. When the drive strengths are small,
we can superpose drives on many different Fock-state

components into a final control pulse that applies an
arbitrary quantum phase to each coefficient cn, as indicated
in Fig. 1(c). We will also use the selective drives to measure
whether there are n photons in the cavity or, by applying a
selective pulse on all the even or the odd peaks, to measure
the parity of the cavity state. Figure 1(e) shows these
operations in quantum circuit notation. Mathematically,
the SNAP gate SnðθÞ on a single Fock state jni can be
described as

SnðθÞ ¼ eiθjnihnj; ð2Þ

and the generalized SNAP gate Sð~θÞ acting on multiple
Fock-state components as

Sð~θÞ ¼
Y∞

n¼0

SnðθnÞ; ð3Þ

with ~θ ¼ fθng∞n¼0.
Several well-known operations are straightforward to

express in this form, for example, a rotation by ϕ in the
phase space: θn ¼ nϕ, i.e., a phase linearly increasing with
photon number n. Another example described by a simple
phase relation is Kerr evolution, given by θn ∝ n2.
However, more exotic operations can also be performed
using this gate. Consider the phase pattern
~θ ¼ f0;ϕ; 0;ϕ;…g, giving an equal phase to only the
odd photon-number components. When performed on a
cavity state jβi, this corresponds to a coherent rotation to
cos ðϕ=2Þjβi − i sin ðϕ=2Þj − βi, as shown by simulated
Wigner functions in the Supplemental Material [19]. When
using a cat code [7] with jβi and j − βi as the logical basis
states, this manipulation is a rotation on the encoded qubit.
The SNAP gate provides a natural way to determine the

relative phase between Fock states. To measure these

(a)

(b) (c) (d) (e)

FIG. 1 (color online). Qubit spectroscopy and geometric phase gate. (a) Qubit spectrum with storage cavity population n̄ ≈ 2, showing
that the qubit transition frequency depends on the number of photons in the cavity. (b) Phasor representation of a cavity state. The arrow
cn corresponds to the complex amplitude of state jni; the area of the circle is proportional to jcnj2 ¼ pðnÞ. (c) An example of the SNAP

gate. Two π pulses on the qubit along different axes result in a trajectory that encloses a geometric phase and allows a rotation on each cn
selectively. (d) Final state after operation in (c), which results in a controllable phase evolution on each cn. (e) Quantum circuit
representation of the gates used in this work, whereQ andC correspond to the qubit and the cavity state, respectively. RyjnðϕÞ should be
read as “a rotation by angle ϕ around y conditional on n photons in the cavity”; “%” is the modulo operator.
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phases we perform an interference experiment between
neighboring number states facilitated by a small displace-
ment. This operation effectively allows us to map a relative
phase between number state jni and jnþ 1i to a change in
probability of finding the system in jni. In the limit of a
small real displacement amplitude ϵ ≪ 1=

ffiffiffiffiffiffiffiffiffi
nmax

p
, with nmax

the maximum photon number considered, the displacement
operator can be approximated by its first-order expansion:

DðϵÞ ¼ expðϵâ† − ϵ�âÞ ≈ 1þ ϵâ† − ϵ�â: ð4Þ

In this limit only neighboring Fock-state components
interact. We now consider the effect on cn after a displace-
ment DðϵÞ with real ϵ. Depending on the phase difference
ϕ ¼ argðc�nþ1cnÞ, the coefficients cnþ1 and cn will add
constructively or destructively, corresponding, respectively,
to an increased or decreased probability of finding n
photons. By applying the SNAP gate Snþ1ðθÞ to add phase
θ to cnþ1 before the small displacement, we can find the
phase θnþ1;n, which aligns the vectors cnþ1 and cn. We have
used this scheme to measure the phase difference between
neighboring Fock states as a function of time, i.e., the
system evolution under the influence of the system’s
Hamiltonian, with the qubit starting both in the ground
and in the excited state. The results are shown in Fig. 2 and
allow us to extract all relevant Hamiltonian parameters
directly.

Another application of the SNAP gate is to compensate
the deterministic phase evolution due to the Kerr effect
[21], which is typically an undesired interaction. We have
used a SNAP gate to cancel this phase periodically by
applying an operation Sð~θÞ that exactly cancels the phases
acquired in the 1 μs duration of the operation. The pulse
consists of superposed sideband-modulated Gaussians with
σ ¼ 125 ns, corresponding to a spectral width σf ¼
1

2πσ ≈ 1.25 MHz, and drives the first 11 photon-number
resolved peaks simultaneously. The result of a single step of
Kerr cancellation on a coherent state jβ ¼ 2i is shown in
Fig. 3, with Fig. 3(b) showing the cavity Wigner function
when no Kerr-correction pulse is applied and Fig. 3(c)
showing the corrected cavity state. The Supplemental
Material [19] contains Wigner functions showing the free
evolution as well as the Kerr-corrected state from 1 to
14 μs, i.e., with up to 14 Kerr-cancellation pulses applied
sequentially. The fidelity of a single correction step is
limited due to qubit relaxation and dephasing to about 0.96.
Combining the SNAP gate with cavity displacements

allows us to not only manipulate the quantum phases, but
also the Fock-state populations. As an example we show in
Fig. 4 that we can create the Fock state j1i by applying the
operation Dðβ2ÞSð~θÞDðβ1Þ. The displacements in this
sequence are numerically optimized while ~θ is fixed to
be ðπ; 0; 0;…Þ. The displacement by β1 populates the
cavity with a coherent state [Fig. 4(a)]. After performing
a phase flip on the j0i component using a SNAP gate that

(a) (b)

(c) (d)

FIG. 2 (color online). Phase evolution measurement. (a) Quantum circuit describing the pulse sequence. State preparation consists of
an optional π pulse on the qubit (not shown), a displacement of the cavity DðαÞ, and a variable waiting time ΔT. The phase between cn
and cnþ1 is determined by varying the applied quantum phase using the SNAP gate Snþ1ðθÞ, displacing by ϵ and measuring the population
pðnÞ. (b) Typical measurement signal pðnÞ versus applied phase θ at fixedΔT: a sine wave with minimum pmin and maximum pmax. The
phase between cn and cnþ1 corresponds to the case of destructive interference and is determined from the fit. (c) Phase evolution with
qubit in the ground state. Each trace is the (unwrapped) measured phase difference between neighboring Fock-state components versus
waiting time ΔT. The rotating frame is chosen such that there the phase difference between j0i and j1i is close to zero. From the fit we
extract (see Supplemental Material [19]) the cavity drive detuning Δ=2π ¼ ð−1.1� 0.7Þ kHz and Hamiltonian parameters K=2π ¼
ð−107.9� 0.5Þ kHz and K0=2π ¼ ð3.4� 0.1Þ kHz. (d) Same as in (c) but with the qubit starting in the excited state. The frame on the
cavity generator is adjusted by −8300.0 kHz, and from the fit we find additional detuning Δ=2π ¼ ð17.6� 0.9Þ kHz to give
χ=2π ¼ ð−8281.3� 1Þ kHz, χ0=2π ¼ ð48.8� 0.8Þ kHz, and χ00=2π ¼ ð0.5� 0.2Þ kHz.
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also corrects for Kerr evolution [Fig. 4(b)], the Wigner
function corresponds to a displaced Fock state [25]. When
performing qubit spectroscopy, however, a Poisson photon-
number distribution is still present. The second displace-
ment [Fig. 4(c)] simply translates the Wigner function
back to the origin, but in the Fock basis the effect is

pronouncedly different: qubit spectroscopy reveals that the
state is converted to the Fock state j1i. Simulations show
that the sequence should give a fidelity F ¼ 0.98, whereas
we find F ¼ 0.90 after density matrix reconstruction [26]
based on the experimental data (see Ref. [19]), which we
attribute to qubit decoherence.
A simple extension of the displacement-phase-

displacement protocol used to create the j1i state allows
the construction of operations to climb the ladder of Fock
states by successive application, an indication that arbitrary
state preparation is possible. In fact, the SNAP gate and
displacements together provide universal control, allowing
any unitary operator to be constructed [13]. With nmax the
maximum photon number, state preparation can be
achieved in OðnmaxÞ operations and arbitrary unitaries in
Oðn2maxÞ operations. This sets an upper bound for the speed
at which the large Hilbert space available in oscillators can
be manipulated.
In summary, we have introduced the SNAP gate, which

allows us to manipulate a cavity state by applying a
controlled, arbitrary phase to each individual Fock-state
component. We have used the SNAP gate to determine all
relevant Hamiltonian parameters by measuring the evolu-
tion of the relative phase difference between neighboring
Fock states in an interference experiment. Two useful
cavity operations have also been presented: correcting
for evolution due to the Kerr effect and creating a one-
photon Fock state deterministically. Using the extensions in
Ref. [13], our scheme could potentially be used to
manipulate quantum information encoded in an oscillator.
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FIG. 3 (color online). Kerr correction. (a) Wigner function of
the cavity in a coherent state directly after a displacement
operation Dð2Þ. (b) Wigner function after 1 μs of free evolution
dominated by the Kerr effect. (c) Wigner function after one step
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tion, qubit spectrum, and Wigner function after each of the steps
in the Fock-state creation scheme. (a) Displacement β1 ¼ 1.14.
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