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We present density functional theory based atomistic calculations predicting that slow fracturing of
silicon is possible at any chosen crack propagation speed under suitable temperature and load conditions.
We also present experiments demonstrating fracture propagation on the Si(110) cleavage plane in the
∼100 m=s speed range, consistent with our predictions. These results suggest that many other brittle
crystals could be broken arbitrarily slowly in controlled experiments.
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It has long been known that fracture occurs in brittle
materials when the chemical cost 2γ of creating two new
surfaces is exceeded by the elastic energy G released in the
same process [1]. Extending this purely thermodynamic
picture, Thomson et al. [2] proposed that discrete atomic
sites give rise to a periodic “lattice trapping” barrier. Within
these models, the energy barriers opposing forward and
reverse crack motion can be obtained analytically as a
function of G [3–6]. As G is increased above the Griffith
critical value 2γ, the forward lattice barrier decreases,
falling to zero at a higher load Gþ. Similarly, the barrier
to reverse motion decreases as G is reduced below 2γ,
falling to zero at a lower load G−, so that at sufficiently low
temperatures, cracks will remain stationary for loads in the
lattice trapping range G− < G < Gþ.
Fast dynamic fracture will typically follow imposing

energy release rates above Gþ once all barriers are zero.
Below this value, theoretical lattice models in two-
dimensional brittle crystals at zero temperature indicate that
no propagation will occur [7]. A forbidden range of
velocities for steady-state cracks is thus predicted, known
as the “velocity gap” [8,9]. It arises as a dynamical
consequence of lattice trapping: the snapping of each bond
has to generate and pass along to the next bond sufficient
kinetic energy to induce its breaking, preventing the crack
from falling into the trapped state. A number of molecular
dynamics simulations [10–12] and some single-crystal

experiments [10,13] in silicon have suggested that a velocity
gap may remain at low temperatures, with the crack speed
jumping from zero to ∼2000 ms−1 during loading.
Calculations of the lattice trapping range suggest

Gþ ≃ 1.2 × 2γ, the exact value depending on the system
size and force model assumed [6,14,15]. Lattice trapping
on this scale would imply that perfect brittle crystals are
much stronger than the Griffith strength 2γ and that cracks,
once they move, always move very fast [9]. These two
conjectures have not been universally confirmed by experi-
ments, some of which have detected cracks moving at less
than 1% of the Rayleigh speed at both room temperature
and 77 K [16]. We note, however, that these experiments
were carried out in air, and the measured speed is low
enough to enable propagation by stress corrosion [17].
Most brittle fracture modeling work to date has been

restricted to narrow, quasi-2D model systems, in which all
bonds located along a perfectly straight crack front break
simultaneously. An alternative 3D propagation mechanism
analogous to the kink-based motion of dislocations [18]
was first proposed by Sinclair [4] and later developed by
Marder [19]. A more recent application to calculate the
MEP for Si(111) crack advance was carried out by Zhu
et al. [20], who found that the barrier for the formation of a
kink pair is much lower than the lattice trapping barrier for
2D sequential advance of the entire front. This produced a
possible explanation for the directional crack propagation
anisotropy on the Si(111) plane, attributed to differences in
the energy required to create kink pairs in different
orientations [20,21]. A 3D molecular-dynamics-based
study of fracture in a complex metallic alloy also observed
the formation of kink pairs [22]. Possibly due to
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prohibitively high computational cost, none of these studies
were based on first-principles methods. A similar mecha-
nism of propagation by kink-pair formation has been
observed in the wetting of periodic structures, where the
motion of the contact line is analogous to that of dis-
locations or brittle crack fronts [23].
Here, we combined density functional theory (DFT)

calculations and classical molecular dynamics (MD) sim-
ulations to investigate the issue of brittle crack propagation
in the low speed, finite temperature limit. We used the NEB
[24,25] approach to identify transition states and to
calculate potential energy barriers for various kink propa-
gation mechanisms. Classical MD trajectories were gen-
erated using the Stillinger-Weber (SW) potential [26], with
the three-body term strength increased to ensure a brittle
model material [27,28].
Specifically, we studied the unit advance of a crack on

the Sið110Þ½11̄0� (where round brackets denote the cleavage
plane and square brackets the propagation direction)
cleavage system for an Nsites ¼ 10 unit-cell-deep model
system with dimensions 300 × 100 × 54.3 Å3. The system
is periodic along the crack front direction and contains
81 120 atoms, with a “fixed grips” load applied by
displacing and fixing the upper and lower free surfaces
[29], initially at the Griffith load 2γ so that the total
potential energy of the system is exactly the same before
and after each crack advance step. For this model, the
energy activation barrier to the quasi-2D advance mode is
0.3 eV per unit cell [Fig. 1(a)].
No 2D mode can apply to activated fracture propagation

in real systems, as the arbitrary number of unit cells along
the crack front would imply a diverging total energy barrier
[30]. It is, however, interesting to investigate the load
dependence of the barrier Esimul

a (green dashed line in
Fig. 2). This decreases as the load is increased, eventually
falling to zero at Gsimulþ ¼ 5.45 J=m2. In a realistic 3D
picture, the bonds are broken one after another by kink-pair
formation and advance. We computed the full MEP for this
sequential crack advance mode [Fig. 1(b)] to evaluate the
energy barrier Eform

a to kink formation, i.e., to break the first
bond on an initially straight front [31], and the barrier Eadv

a
to kink advance, which we model by breaking the fifth
bond out of ten. Both values were obtained for a number of
different applied loads above 2γ. As the load was increased,
the barriers to kink advance and formation reduced,
eventually falling to zero at Gadvþ ¼ 4.81 J=m2 and
Gformþ ¼ 5.43 J=m2, respectively (Fig. 2). We note that
the closeness of the computed Gsimulþ and Gformþ values is
consistent with the quasi-2D picture of crack advance
where kink pairs form simultaneously at all points along
the crack front.
At loads G > 2γ, a net total energy decrease follows

kink advance, which can be evaluated as ΔEadvðGÞ ¼
ðG − 2γÞΔA where ΔA ¼ 14.7 Å2 is the area of new
surfaces exposed by kink advance. The barrier for kink

retreat, traversing the same MEP backwards and, thus,
uphill (magenta curve in Fig. 2), is larger than the advance
one (red curve) for all G > 2γ. Similarly, the barrier to kink
healing to recover a straight front (cyan curve) can be
determined by traversing the kink formation pathway
backwards. At low loads, whereG=2γ only slightly exceeds
unity, these barriers are low, suggesting that transient kink
healing competes with kink advance in the crack propa-
gation kinetics in this load regime.
Although recalibration of these results using DFT

calculations is needed before attempting direct comparison
with experiments, as discussed further below, three propa-
gation regimes can be identified from the kinetic barrier
behavior represented in Fig. 2. Namely, (I) for low loads
2γ < G < Gadvþ , isolated kinks are expected, since the rate
of kink formation is much lower than the rate of kink

FIG. 1 (color online). Minimum energy paths (MEPs) obtained
with the nudged elastic band (NEB) method at the Griffith critical
load 2γ on the Si(110) cleavage plane for (a) crack advance by
simultaneous advance of all Nsites ¼ 10 bonds along the crack
front and (b) crack advance by sequential bond rupture. Solid
blue circles are minima and black crosses the positions of
replicas. Schematic insets show broken (white) and intact (black)
bonds along the crack front.
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growth, (II) for intermediate loads Gadvþ < G < Gformþ , kink
growth is barrierless and essentially instantaneous, but
formation is still relatively slow, leading to large numbers
of interacting kinks, and (III) for loads G > Gformþ , kink
formation also becomes barrierless, so that many kinks can
nucleate. The existence of regime (I) suggests a very slow
“unzipping” mode is possible for crack advance. In this
regime, kink formation is very slow, and we speculate that
for loads just above 2γ, it may occur only at material
defects. To check that these predictions remain consistent
with a dynamical picture, we performed molecular dynam-
ics simulations in a skewed model crack system where
kinks can propagate without interacting [32]. We observe
the unzipping mode over a range of energy release rates
below Gformþ . The dependence of the kink migration rate on
temperature fits an Arrhenius expression for temperatures
from 50 to 300 K, with rates compatible with those
predicted from static barrier calculations. To check the
reliability of the SW potential and enable direct comparison
with experiments, we next performed barrier calculations
based on a quantummechanical (QM) approach. A full QM
calculation is not practical for the ∼105 atom model system
sizes needed to adequately capture stress concentration in
the three-dimensional strip geometry. Efficient calibration
of classical results can, however, be achieved by carrying
out DFT calculations for the two-dimensional propagation
mode (cf. green dashed line in Fig. 2). For this, we used a
hierarchical multiscale approach based on the methods of
Spence et al. [14] and Perez and Gumbsch [15]. Namely,
we computed lattice trapping barriers directly with DFT
[33] and the modified SW potential, using the NEB method
for the two-dimensional propagation mode in small crack
tip clusters with boundary conditions set by the Irwin near-
field displacements from the continuum anisotropic linear
elastic fracture mechanics solution [36]. The elastic moduli

of the SW potential and of the DFT approach were used to
compute the energy release rates G and the corresponding
stress intensity factors KI for a range of applied loads
(Table I).
Remarkably, we find that barriers computed with DFT

and SW collapse into a universal curve when the G axis is
rescaled to align Gsimulþ and the Esimul

a axis is rescaled to
align the barrier heights at 2γ [37]. The data presented in
Table I indicate that the DFT lattice trapping barriers are
slightly lower than those predicted by the modified SW
model, EDFT

a ð2γDFTÞ=ESW
a ð2γSWÞ ¼ 0.85. However, com-

paring GDFTþ =2γDFT ¼ 1.185 to GSWþ =2γSW ¼ 1.499 indi-
cates that the range of lattice trapping predicted by DFT is
much more limited. This is in agreement with previous
results for the range of lattice trapping which did not
include direct calculations of energy barriers [15].
Although three-dimensional DFT NEB calculations for
the kink formation and advance processes described above
are currently not viable, the observed universal form of the
EaðGÞ function (see the Supplemental Material [37])
suggests that it is reasonable to assume that the other
crack advance processes can be rescaled according to the
DFT Gsimulþ and Esimul

a ð2γÞ values in the same way. This
leads to the estimated DFT kink barriers shown in Fig. 3.
To investigate dynamical effects, we computed crack

speeds using classical molecular dynamics with the modi-
fied SW potential over a wide range of energy release rates
and system sizes. NVE simulations were carried out at
300 K in a 524 × 171 × 263 Å3 740 000 atom model
system. Cracks were propagated from rest at a G ¼
6.1 J=m2 load for 15 ps to allow the system to reach its
equilibrium state. The applied strain was then rescaled to
enforce a smaller load in the 4.25 < G < 5.45 J=m2 range,
and for each load, the simulation was continued for a
further 20 ps. Kink-based propagation was observed in all
these low-G simulations with no evidence of a velocity gap
at this temperature. Crack velocities measured from MD
simulations are shown in Fig. 3, where G=2γ has been
rescaled to align it with the DFT Gþ as described above.
The error bars on the speeds measured in the classical MD
were estimated from a sensitivity analysis assuming an

FIG. 2 (color online). Dependence of kink-pair energy barriers
calculated with the modified SW potential on G=2γ. Vertical
dotted lines correspond to the loads Gadvþ and Gformþ at which the
kink advance and formation barriers fall to zero.

TABLE I. Comparison of elastic and lattice trapping properties
of Si ð110Þ½11̄0� cracks using the modified SW potential and DFT
the generalized gradient approximation (GGA-PW91).

Property Modified SW DFT (GGA)

a0 5.43 5.44 Å
C11 201 GPa 155 GPa
C12 51.6 GPa 57.4 GPa
C44 90.3 GPa 76.1 GPa
γ110 1.67 J=m2 1.72 J=m2

Gsimulþ =2γ 1.499 1.185

Esimul
a ð2γÞ 0.26 eV 0.22 eV
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Arrhenius dependence of speed on barrier height and that
the MD NEB barriers, even after calibration to match the
DFTones as described above, are accurate to no better than
0.02 eV. Using larger model systems with sizes up to
1231 × 246 × 785 Å3 containing up to 12 × 106 atoms
leads to a very similar energy-speed relation [38].
These calculations predict that thermally activated kink

motion in silicon can give rise to crack propagation at
speeds of hundreds of m=s under moderate applied loads,
although propagation in the few hundred m=s speed regime
has not been so far reported. To test this prediction, we,
thus, carried out a novel set of experiments with silicon
crystal specimens on the same cleavage system. Namely,
the energy-speed relationship was examined for the low
energy regime on the ð110Þ½11̄0� low energy cleavage
system of silicon. The experiments were carried out in
an inert argon environment to prevent chemically activated
(“stress corrosion”) cracking [17]. We evaluated the crack
speed from the fracture surface features using the Wallner
lines method, calculating the energy release rates G at each
point of the specimen by finite element analyses [39]. Our
results are shown as black points and error bars in Fig. 3.
To compare our calculations and experiments, we next

used two simple analytical models for vðGÞ relevant to the
lower and upper speed range limits considered here. For
low speeds, Lawn [5] has shown that in the steady state
where kink formation and annihilation via collisions are in
equilibrium, thermally activated kink motion predicts the
speed dependence:

vðGÞ ¼ ax
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓadvðGÞΓformðGÞ
p

; ð1Þ

where ax is the lattice spacing in the propagation direction
[1.35 Å for the Sið110Þ½11̄0� fracture system] and

ΓadvðGÞ ¼ ν0 exp

�

−
Eadv
a ðGÞ
kBT

�

; ð2Þ

ΓformðGÞ ¼ ν0 exp

�

−
Eform
a ðGÞ
kBT

�

ð3Þ

are the kink advance and kink formation rates, respectively,
where the Arrhenius factors following the ν0 attempt rate
were calculated from the MEP results reported in Fig. 3.
For higher speeds corresponding to barrier-free propaga-
tion, we used the continuum elastodynamic crack motion
equation proposed by Freund [40], which takes the form

vðGÞ ¼ cR

�

1 −
2γ

G

�

; ð4Þ

where cR is the Rayleigh shear wave speed computed from
the model elastic constants (here, 5440 m=s), and 2γ is the
fracture resistance, here assumed constant for all the low
speeds considered. The velocities predicted by Eqs. (1) and
(4) for T ¼ 300 K are plotted as purple and blue dashed
lines, respectively, in Fig. 3. Choosing ν0 ¼ 6.8 ps−1 aligns
the two expressions at Gformþ and is consistent with attempt
rates measured in MD simulations. The fully thermally
activated model of Eqs. (1)–(3) and our MD simulation
provide a lower bound for propagation in the low-load
interval considered, while the continuum dynamics solu-
tion provides an upper bound for the same, with opposite
curvature.
Our new experimental results fall between these two

bounds, exemplifying low speed propagation in Si crystals
and are consistent with a crossover from thermally acti-
vated to dynamic fracture. However, a precise quantitative
comparison between our models and experiments remains
challenging due to the large (≥ 0.2 J=m2) uncertainty of
experimental G values (horizontal error bars in Fig. 3) and
our use of idealized pure-Si models. Low speed fracture is
observed over a range of low speeds belowGsimulþ where our
predicted kink formation and migration barriers are suffi-
ciently small to allow thermally activated motion. The
predicted speed of this motion (magenta curve in Fig. 3) is a
lower bound since these kink barriers could still be too high
as additional low-barrier mechanisms leading to higher
crack propagation speeds cannot be ruled out. In particular,
real specimens are likely to contain defects that may act as
additional low-barrier kink-pair sources. Since, once
formed, kinks can propagate any distance along the crack
front, even a moderate density of defects would suffice to
boost crack speed in the load regions where intrinsic kink
formation is the limiting step in our simulations. If these
sources were associated with very low or vanishing kink
formation barriers, kink advance would become the rate
limiting step between Gadvþ and Gformþ .
We expect the picture of thermally activated crack

motion to apply generally to other crystalline materials,

FIG. 3 (color online). Estimated DFT energy barriers for crack
growth processes (left vertical axis) overlaid with experimental
Si(110) and classical MD crack speed data (right vertical axis).
The G axis has been rescaled to align with DFT Gsimulþ , and the
dashed purple and blue lines show simple analytical models
relevant in the low and high speed limits (see text).
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although the atomic details of kink structure will vary from
one material to another. This is at variance with the
common intuition informed by the everyday experience
of fast catastrophic failure of brittle materials driven by
stress intensification yielding barrierless crack propagation.
The possibility of a velocity gap for speeds below
∼2000 ms−1 occurring at finite temperatures, which could
be inferred on the basis of the results of previous simu-
lations, is not confirmed here, once kink propagation and
low-barrier kink-pair generation are enabled by a fully 3D
model system geometry.
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