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We propose that impurities in a Bose-Einstein condensate which is coupled to a transversely laser-
pumpedmultimode cavity form an experimentally accessible and analytically tractable model system for the
study of impurities solvated in correlated liquids and the breakdown of linear-response theory. As the
strength of the coupling constant between the impurity and the Bose-Einstein condensate is increased, which
is possible through Feshbach resonance methods, the impurity passes from a large to a small polaron state,
and then to an impurity-soliton state. This last transition marks the breakdown of linear-response theory.
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It is well known that ultracold atomic physics provides
realizations of interesting quantum many-body systems
[1–3]. In particular, the emergence of spatial order and
other forms of spontaneous symmetry breaking in quantum
systems can be studied in Bose-Einstein condensates (BECs)
confined to transversely laser-pumped cavities [4,5]. We
focus on the problem of an impurity in a correlated quantum
liquid near a continuous (or weakly first-order) symmetry
breaking transition. The role of quantum fluctuations on
impurity solvation and transport in correlated liquids like
water [6] is currently the subject of active debates in the
physical chemistry literature. The failure of linear-response
theory plays a central role in these debates [7].
The physics of impurities in ultracold quantum gases

[8–10] and in uniform BECs has already been well
explored [11–16]. The interaction between a (neutral)
impurity and the Bogoliubov excitations of the BEC
maps in the continuum limit onto the so-called Fröhlich
Hamiltonian [17–20], a linear-response theory that
has been extensively applied to charged impurities in
polarizable media, or polarons. Such a “Bose polaron” can
undergo a transition [21] from a large polaron state,
which is well described by the Fröhlich continuum theory,
to a small polaron state, in which the impurity is self-
trapped on length scales of the order of the interparticle
spacing of the medium [22,23].
In a transversely pumped multimode cavity, a BEC

undergoes a spontaneous phase transition from the uniform
state to a state in which the density of the condensate is
periodically modulated. This transition is described by a
quantum version of the Landau-Brazovskii (QLB) theory
for fluctuation-driven first-order phase transitions [5].
In this Letter, we will combine the Fröhlich Hamiltonian
description for impurities and the QLB theory for sym-
metry breaking in BECs to investigate the fate of a BEC
polaron near the onset of spontaneous positional ordering,
and determine whether impurities in a BEC in a multimode
laser-pumped cavity can serve as a model system for the

study of the effects of quantum fluctuations on solvation
and the breakdown of linear-response theory.
Model.—Our model is defined by a Lagrangian that

is the sum of three terms, respectively, referring to the
impurity particle, the condensate, and the lossy cavity. The
Lagrangian of an impurity particle in a BEC condensate is

LI ¼
1

2
MIj _Rj2 −

Z
d3rVðR − rÞρðr; tÞ; ð1Þ

with MI the impurity mass [24], RðtÞ the impurity location,
and ρðrÞ the deviation of the local density of the condensate
from the mean density, n0 ¼ N0=V (N0 and V are the
number of bosons in the condensate, and the volume of the
system, respectively). Next, VðrÞ is the interaction potential
between the impurity particle with the bosons. In the s-wave
Fermi approximation, Vðr − r0Þ ¼ gIBδð3Þðr − r0Þ with
the pseudopotential, gIB ¼ 2πaIBℏ2=Mr, where aIB is the
impurity-boson s-wave scattering length andMr the reduced
mass of an impurity-boson binary system. The Lagrangian
for the excitations of the BEC reads

LB ¼ 1

V

X
q

ℏ
ζq

ðj_ρqj2 − ωðqÞ2jρqj2Þ þ LNL: ð2Þ

Here, ρqðtÞ ¼
R
d3rρðr; tÞe−iq·r and ζq ¼ n0ϵ0ðqÞ=ℏ with

ϵ0ðqÞ ¼ ðℏqÞ2=2MB, the free boson dispersion relation. For
a uniform BEC, the dispersion relation is given by the
Bogoliubov spectrum ℏω0ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0ðqÞ½ϵ0ðqÞ þ 2n0gBB�

p
with gBB ¼ 4πaBBℏ2=MB, the pseudopotential for boson-
boson scattering (aBB is the boson-boson scattering length).
Nonlinear terms are represented by LNL. For BECs in an
optical cavity, both the boson-boson and boson-impurity
scattering length are experimentally adjustable parameters.
The Fröhlich Hamiltonian of BEC polarons in uniform
condensates is recovered upon canonical quantization of the
linear and quadratic terms of Eqs. (1) and (2).
The modes of a BEC inside a laser-pumped optical

cavity are mixed Bogoliubov excitations and electromag-
netic modes [4]. The mode frequencies can be depressed
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and driven to zero when the frequency of the transverse
laser matches that of a low frequency mode of the cavity.
Near the instability threshold, the spectrum can be approxi-
mated as [5]

ωðqÞ2 ≃ Δþ λR2ðjqj − q0Þ2: ð3Þ
Here, q0 is the wave number of the cavity mode, which is of
the order of the inverse of the radius R of the cavity radius
[4,5]. Δ is the gap in the harmonic mode spectrum, and λ
is a phenomenological parameter determining the range of
wave vectors over which the depression takes place. It is
itself determined by the width of the cavity resonance and
other factors [5]. In mean field (MF) theory, this Lagrangian
describes a continuous ordering transition at Δ ¼ 0 from a
uniform phase to a density-modulated phase with modula-
tion vector q0 and a modulation amplitude proportional to
jΔj1=2 [25–27].
The modes of the BEC are coupled to the electromag-

netic modes outside the pumped cavity that act as a
reservoir. These are included in the form of a distribution
of harmonic oscillators coupled linearly to the BEC modes.
Their Lagrangian is LE ¼ P

j
1
2
mjf _xj2 − ω2

jx
2
jg −

P
j;q

Cj;qρqxj. The last term represents a linear coupling of
the reservoir degrees of freedom xj to the modes ρq with
coupling constants, Cj;q. The nature of the dissipation
is determined by these coupling constants through the
oscillator spectral density, JqðωÞ ¼ ðπ=2ÞPjðCj;q

2=mjωjÞ
δðω − ωjÞ [28]. We will restrict ourselves to the simplest
case of “Ohmic” dissipation with JqðωÞ ¼ ηqω, for low
frequencies where ηq is an effective friction coefficient
[29]. The classical equation of motion for the impurity,
obtained by minimizing the total action, is of the Langevin
form with a friction coefficient that diverges at the MF
critical point as η=Δ2, where η≡ ηq0 .
The equilibrium partition function Z of the impurity is

proportional to the functional integral
R
expðSTÞD½RðtÞ�

D½ρqðtÞ�D½fxjðtÞg� over all degrees of freedom, which
must obey periodic boundary conditions in “imaginary
time,” 0 ≤ s ≤ β (β ¼ 1=kBT). Here, ST is the Euclidean
action. The path integral over the environmental oscillators
can be carried out analytically. The remaining path integrals
over condensate modes and particle trajectories will be
discussed separately for positive and negative Δ.
Δ > 0.—For positive Δ, the nonlinear terms (LNL) do

not play a significant role. The density fluctuations can
then be integrated out, leading to an effective action for the
particle trajectories

S ≃ −
Z ~β

0

1

2

�
d ~R
d~s

�2

d~s − ~f ·
Z ~β

0

~Rð~sÞd~s

þ α

Z
d3 ~q

ZZ ~β

0

d~sd~s0Gð2Þ
~q ðj~s − ~s0jÞei ~q·½ ~Rð~sÞ− ~Rð~s0Þ�; ð4Þ

where α ¼ ðg2IBq30ζℏ=4ð2πÞ3ÞðMI=ℏ2q20Þ3 plays the role
of a dimensionless coupling constant while ζ≡ ζq0 . We
shifted to dimensionless quantities, indicated by tildes,

setting MI ¼ ℏ ¼ q0 ¼ 1 [30]. An infinitesimal external
force ~f is included in the action, in order to compute the
effective mass. The kernel, for q around 1, is given by

Gð2Þ
q ðτÞ ¼ 1

β

Xþ∞

n¼−∞

eiωnτ

χðq − 1Þ2 þ Γþ γjωnj þ ω2
n
: ð5Þ

The summation is over dimensionless Matsubara frequen-
cies, ωn ¼ 2πn=β. The dimensionless distance to the
MF critical point of the QLB is defined here as Γ ¼
ΔðMI=ℏq20Þ2, the dimensionless friction coefficient as
γ ¼ ηðMI=ℏq20Þ, and the dimensionless field rigidity as
χ ¼ λðRq0Þ2ðMI=ℏq20Þ2. The path integral over the particle
trajectories is performed variationally [31] by defining a
suitable Gaussian trial action. For the present case we choose

St ¼ −
Z

β

0

1

2

�
dR
ds

�
2

ds − f ·
Z

β

0

RðsÞds

−
1

2

ZZ
β

0

Kðjs − s0jÞjRðsÞ −Rðs0Þj2dsds0; ð6Þ

where the kernel, KðτÞ¼ ð1=βÞPþ∞
n¼−∞Kneiωnτ with Kn ¼

C=ðDþ γjωnj þ ω2
nÞ, is similar to the actual kernel. The

constants C and D play the role of variational parameters
that are determined by applying Feynman’s inequality for
trial actions, FðfÞ ≤ Ft þ β−1hS − Stit. Here FðfÞ ¼ −
kBT lnZ is the free energy of the particle. Expectation
values are computed using the Gaussian trial action. For a
free particle with mass M� subject to a force f, the second
derivative of the free energy with respect to the applied force
equals ∂2F=∂f2jf¼0 ¼ ℏ2β2=12M� (in actual units). Using
this as the definition of the effective mass [32] and applying
the trial action gives M� ¼ ðβ2=24Þ½Pn>0gn�−1 where
gn ¼ ½ω2

n þ ð2=βÞðK0 −KnÞ�−1. In the limit of γ ¼ 0, the

kernel Gð2Þ
q¼1ðτÞ decays as expð− ffiffiffi

Γ
p

τÞ, as in Feynman’s
theory of large polarons [33]. In the opposite limit of γ → ∞,
quantum fluctuations of the field are suppressed and only the
n ¼ 0 term remains, corresponding to MF classical static
structure factor 1=½χðq − 1Þ2 þ Γ�. The model reduces in
this limit to the theory of the small polaron [34]. The
effective mass indeed undergoes a discontinuous jump upon
increasing the coupling constant at a critical value, αc ≃ffiffiffiffiffiffi
χΓ

p
(apart from a numerical factor). From Fig. 1(a), as the

damping coefficient is reduced, the effective mass disconti-
nuity is reduced and goes to zero at a critical point [35].
According to Fig. 1(c), the value of the critical coupling
constant for the transition between the large and small
polarons is strongly reduced as one approaches the ordering
transition of the BEC. This is an important result: the
transition from large to small polaron can be induced much
easier in a BEC near the ordering transition [34].
Δ≲ 0.—For negative Δ, the nonlinear terms of Eq. (2)

must be taken into account. It can be shown that only even
terms need to be included [5], LNL ¼ −u

R
d3rjρðrÞj4−

w
R
d3rjρðrÞj6. In order to perform the functional
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integrations for this nonlinear case, first expand the free
energy F½RðsÞ� in a Taylor expansion in powers of the
impurity pseudopotential, gIB. Then perform, term by term,
the functional integrations using the nonlinear action. The
zero-order term in the expansion is the partition function of
the condensate in the absence of the particle. The first-order
term is

Fð2Þ½RðsÞ� ¼ −g2IB
2!

X
q;n

Gð2Þ
q;ωn

ZZ
β

0

dsds0eiq·½RðsÞ−Rðs0Þ�: ð7Þ

Here, Gð2Þ
q;ωn is the full two-point Green’s function of the

system without the impurity. The second order term
contains the full four-point vertex function. These full
correlation functions are obtained by a second expansion,
now in powers of LNL. The nonlinear terms can be included
by the renormalization group method [5]. To one-loop
order, this leads to a renormalization of Δ to Δ̄ with
Δ̄≃ Δþ Pu lnðΔc=Δ̄Þ, where P ∝ q02 and Δc is a high-
energy cutoff. The effective gap Δ̄ of the spectrum remains
positive for negative values of Δ. The renormalized quartic
coefficient ū is given by ū≃ uð1 − uΠ=1þ uΠÞ with
Π ¼ P=Δ̄; so ū becomes negative if the effective gap Δ̄
drops below Pu (which happens for slightly negative Δ).
The functional integral over the renormalized quadratic
Lagrangian no longer suffers from strong fluctuations,
even for negative ū. For negative ū and decreasing Δ, a
first-order phase transition takes place at ū2 ¼ 4ℏΔ̄w=ζ
where the modulation amplitude changes discontinuously
from zero to

ffiffiffi
2

p ðℏΔ̄=ζjūjÞ1=2 The correlation length at the
ordering transition is ξ ¼ R

ffiffiffiffiffiffiffiffiffi
λ=Δ̄

p
. This renormalized

action SR
T has the same form as ST but with u and Δ

replaced by the renormalized ones: it can be analyzed by
MF theory plus fluctuation corrections.

The simplest case is the strong damping limit, when the
condensate density modulation can be treated as quasistatic
with respect to the dynamics of the impurity [36]. The MF
minimization of SR

T leads to a radial density modulation
around a static impurity at the origin of the form

ρðrÞ ¼ ρ0
sinðq0rÞ
q0r

expð−r=ξÞ: ð8Þ

Generally ρðrÞ retains this form if q0r≳ 1. Using Eq. (8) as
a trial function (with ρ0 the free parameter) leads to the
nonlinear MF free energy cost FBðρ0Þ for radial density
modulations

FBðρ0Þ≃ 1

π2q30

�
2ℏΔ̄ðq0ξÞ

πζ
jρ0j2 þ ūjρ0j4 þ

w
2
jρ0j6

�
; ð9Þ

where FBðρ0Þ has, in general, the form of a double-well
potential with one minimum at ρ0 ¼ 0 and a second near
the modulation amplitude ρ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jūj=3wp
of the ordered

phase (see Fig. 2). The second minimum represents a
spherically symmetric deformation of the condensate that
interpolates between the ordered state near the origin and
the uniform state far from the origin. We will refer to this
structure as the impurity soliton [37]. At the transition
point, the energy cost of the impurity soliton is F �≃
ð8ℏ=π3q30ζÞðΔ̄cjūj=wÞðq0ξÞ. If the mass of the impurity is
so large (MI ≫ ℏ2q20=ρ0gIB) that quantum fluctuations
of the impurity can be disregarded, the free energy is
F I ≃ −jgIBρ0j as shown in Fig. 2(a).
For small gIB the absolute minimum of F ðρ0Þ ¼ FB þ

F I as a function of ρ0 is proportional to gIB [Fig. 2(a1)],
which corresponds to the small polaron, while there is
a metastable minimum near ρ� that corresponds to the
impurity soliton. For larger values of gIB, the absolute
minimum jumps near ρ� [see Fig. 2(a2)]. The soliton state
has lower energy if

8ℏ
π3q30ζ

ðΔ̄cjūj=wÞðq0ξÞ ≲ jgIBρ�j: ð10Þ

Since ξ ∝ Δ̄−1=2, the impurity-soliton state necessarily has
a lower energy than the polaron state for sufficiently large
correlation lengths and, hence, linear-response theory must
break down for sufficiently large correlation lengths. When
typical values for a pumped BEC are inserted in this
inequality, one finds that the polaron-soliton transition
should be experimentally accessible [38].
Next, we include quantum fluctuations of the impurity

particle. The effective Lagrangian is

LI ≃ 1

2
MIj _Rj2 þ jgIBρ0j

sinðq0RÞ
q0R

expð−R=ξÞ: ð11Þ

The impurity free energy F I is obtained from LI by
integrating over particle trajectories. This leads to

FIG. 1 (color online). Effective mass versus dimensionless
coupling constant and (a) dissipation, (b) temperature, and (c)
distance from the ordering transition. Other parameters are set to
(a) β ¼ χ ¼ 100 and Γ ¼ 1, (b) γ ¼ χ ¼ 100 and Γ ¼ 1, and (c)
β ¼ χ ¼ γ ¼ 100. In (a) and (b) the red dots indicate the critical
points where the discontinuity of the effective mass closes. The
dark arrows marked by αth correspond to the dotted line in (c),
i.e., γ; β → ∞, at Γ ¼ 1.
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F Iðρ0Þ≃ −jgIBρ0j þ
3

2
ℏΩðρ0Þ þ � � � : ð12Þ

The first term is the earlier classical limit while the second
term is the lowest-order correction due to quantum fluc-
tuations. Ωðρ0Þ ¼ ðjgIBρ0jq20=3MIÞ1=2 is the natural fre-
quency of the bound-state impurity particle in the effective
potential. The bound state disappears if the right-hand side
of Eq. (11) is positive, in which case F I should be set to
zero [the flat segment of the red curve in Figs. 2(b1) and
2(b2)]. The small polaron minimum is replaced by a
minimum at ρ0 ¼ 0 that corresponds to the large polaron.
The condition for the small polaron to survive in the
presence of the zero-point fluctuations of the impurity is

glB > gc1 ¼
ffiffiffiffiffiffiffiffi
ℏ3Δ̄ξ
MIζ

q
or αc ≃

ffiffiffiffiffiffi
χΓ̄

p
(apart from a numerical

factor), which is just the earlier criterion for self-trapping of
a small polaron. The soliton state is significantly more
stable against zero-point fluctuations of the impurity than
the small polaron state.
Quantum fluctuations of the condensate are included

by treating ρ0ðtÞ as a time-dependent coordinate with a
kinetic energy, K ¼ ð2πξ=q20Þ½dρ0ðtÞ=dt�2. In the double-
well potential, the condensate coordinate now can tunnel
between the two minima, allowing for a linear super-
position of the small polaron and soliton states. As the
strength of the quantum fluctuations of the condensate

increases, the impurity-soliton state disappears, roughly
when the zero-point energy of the condensate coordinate
exceeds the depth of the well [39].
An important concern regarding the soliton solutions is

their instabilities in spatial dimensions D > 1, due to
Derrick’s theorem [40]. We show in Supplemental
Material (3) that the coupling with the particle’s degree
of freedom stabilizes the soliton. Furthermore, Gaussian
fluctuations are shown to be irrelevant in D ≥ 2.
In summary, the QLB theory predicts that impurity

particles generate a variety of structures as the excitation
spectrum is progressively depressed. Above the MF tran-
sition point, the impurity generates either a large or a small
polaron state, depending on the coupling and damping
constant. Below the MF transition—but above the actual
ordering transition—a new state appears: the soliton with a
self-trapped impurity particle (see Fig. 3).
Discussion.—In the Introduction we posed the question

whether impurities in a BEC can serve as a model system
for the study of the role of quantum fluctuations and the
breakdown of linear-response theory in solvation theory.
We have found that linear-response theory breaks down
when a pumped BEC system becomes increasingly corre-
lated on approach of a spontaneous symmetry breaking
transition, signaled by the formation of the impurity-soliton
state. Does this agree, at least qualitatively, with solvation
phenomena in conventional fluids? It is believed that the
breakdown of linear-response theory for small ions in water
is related to the formation of partially ordered shells of
water molecules (“solvation shells”) around the ion [6].
Water is a highly correlated fluid and solvation shells
indeed could be—crudely—viewed as local realizations of
the low-temperature ordered phase (i.e., ice). On the other
hand, the water molecules surrounding solvated electrons,
with much stronger zero-point fluctuations, remain disor-
dered. A recent mixed quantum-classical simulation of
electrons solvated in water have a wave function that is
relatively delocalized (“wet electron”) [7]. According to the
theory, an impurity-soliton state destroyed by the zero-
point motion of the particle would have to be a large
polaron. Quantitative experimental studies of impurities in
BECs in pumped optical cavities that would verify the

FIG. 2 (color online). Variational free energies as a function of
the modulation amplitude ρ0. The blue, red, and green (top,
bottom, and middle) curves show the condensate free energy
FBðρ0Þ, impurity free energy F Iðρ0Þ, and the total free energy
F ðρ0Þ ¼ FBðρ0Þ þ F Iðρ0Þ, respectively. The absolute minima
of total free energies are indicated by black dots in each panel.
(a1),(a2) Massive impurities: the free energy of the impurity
decreases linearly with ρ0. For increasing pseudopotential, the
absolute minimum shifts from the neighborhood of the Gaussian
minimum to that of the vacuum of the ordered phase—
corresponding to a transition from the small polaron to the
impurity soliton. Panels (b1) and (b2) include the zero-point
energy of a bound-state particle, which follows the red curves.
The minimum at ρ0 ¼ 0 corresponds to the large polaron (b1).
For increasing pseudopotentials (b2), there may be transitions
from the large polaron to the small polaron and then to the soliton,
or a single transition directly from the large polaron to the
impurity soliton.

FIG. 3 (color online). The different states of the BEC-impurity
system are shown schematically. In each panel, the blue color
(surrounding background) indicates the condensate modulation
amplitude while the red cloud at the center indicates the particle.
From left to right, large polaron, small polaron, and the soliton.
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association of the breakdown of linear-response theory with
solitons should, according to our estimates [38], be possible
and would be of great value as a model system to study
quantum effects on solvation in a system described by a
general theory that does not require detailed assumptions
about molecular interactions.
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