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For a mixture of alkali-earth atomic gas in the long-lived excited state 3P0 and the ground state 1S0, in
addition to nuclear spin, another “orbital” index is introduced to distinguish these two internal states. In this
Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and
nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and
orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the
electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is
particularly accessible for the 173Yb system. The BCS-BEC crossover in this system requires two fermion
pairing order parameters, and displays a significant difference compared to that in an alkali-metal system.
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Magnetic Feshbach resonance (MFR) is a powerful tool
to tune the interaction in a alkali-metal system to the
strongly interacting regime, and plays a crucial role in cold
atom physics [1]. For instance, for alkali atoms, each atom
has an electronic spin S ¼ 1=2. The interaction between
two atoms has different potentials depending on whether
the total electronic spin is a singlet or triplet. Thus, one can
utilize the Zeeman energy to control their relative energy
and to reach a scattering resonance. However, the alkali-
earth atom (like Sr) or alkali-earth-like atom (like Yb) has a
fully occupied outer shell, and their total electron spin is
zero. Thus, it is conventional wisdom that there is no MFR
in alkali-earth atoms at ground state. Instead, one can tune
the interaction by optical Feshbach resonance [2], but such
a scheme suffers from strong atomic loss and heating.
Another significant feature of the alkali-earth atom is the

existence of a long-lived excited state 3P0, in which one
electron is excited to the p orbital and the total electronic
spin S ¼ 1. The dipole transition to ground state 1S0 is
“spin-forbidden” and therefore the lifetime of the excited
state can be as long as a few seconds. This is used for
atomic clock transition. Considering an atomic gas mixture
of 3P0 (denoted by jei) and 1S0 (denoted by jgi) states, in
addition to a nuclear spin degree of freedom, one introduces
another so-called “orbital” degree of freedom to label the
internal state of atoms [3–5]. Previously, attention had been
paid to MFR between 3P2 state and 1S0 state due to
anisotropic interactions, but these resonances are generally
quite narrow [6]. Moreover, since J ¼ 0 for 3P0, even such
a MFR does not exist between 3P0 and 1S0.
In this Letter we propose an alternative mechanism that

can lead to a Feshbach resonance (FR) between atoms in
jei and jgi. Though this FR is also controlled by a magnetic
field, the mechanism of how it works is quite different from

MFR in alkali atoms. Two essential ingredients are inter-
orbital (nuclear-)spin-exchange interactions, which has
been observed in recent experiments [3–5], and the small
difference in the nuclear Landé g factor δg between
different orbital states (jei and jgi) [7]. The orbital degree
of freedom plays the role as electronic spin in the FR
of alkali atoms, and we therefore name it the “orbital
Feshbach resonance” (OFR).
Two-body problem with pseudopotential approach.—

For simplicity, we first illustrate the basic idea with the
pseudopotential model. And without loss of generality, we
take two nuclear spin states (mI and mI þ 1) denoted by j↑i
and j↓i. Their energy level diagram is shown in Fig. 1(a) and
explained in the figure caption. We consider two atoms, either
one in jg↓i and the other in je↑i (denoted by open channel
joi ¼ ðjg↓; e↑i − je↑; g↓iÞ= ffiffiffi

2
p

), or either one in jg;↑i and
the other in je↓i (denoted by closed channel jci ¼
ðjg↑; e↓i − je↓; g↑iÞ= ffiffiffi

2
p

). The threshold energy of these
two channels differs by δ due to the difference in the Landé g
factor. For the relative motion between these two atoms (with
mass m), the noninteracting Hamiltonian is written as

Ĥ0 ¼
�
−
ℏ2∇2

m
þ δ

�
jcihcj − ℏ2∇2

m
joihoj: ð1Þ

The interaction part depends on whether the orbital degree of
freedom forms a singlet or triplet. For the s-wave scattering
we introduce two antisymmetrized bases

j�i¼ 1

2
ðjgei� jegiÞðj↑↓i∓j↓↑iÞ¼ 1ffiffiffi

2
p ðjci∓joiÞ; ð2Þ

the Huang-Yang pseudopotential is diagonal in this bases
with two different scattering lengths aþs and a−s ,
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V̂ ¼
�
4πℏ2

m

X
i¼�

aðiÞs jiihij
�
δðrÞ ∂

∂r ðr·Þ: ð3Þ

When rotated into the joi and jci bases, the interaction
potential V̂ becomes

V̂ ¼ V̂0ðjoihoj þ jcihcjÞ þ V̂1ðjcihoj þ joihcjÞ; ð4Þ

where Vj ¼ ð4πℏ2=mÞasjδðrÞð∂=∂rÞðr·Þ, and as0 denotes
ðaþs þ a−s Þ=2, and as1 denotes ða−s − aþs Þ=2. The V̂1 term
describes an interorbital spin-exchange process, as illus-
trated in Fig. 1, which couples the open and closed
channels. A positive as0 is always associated with a bound
state with binding energy εb ¼ −ℏ2=ðma2s0Þ. Therefore,
when δ ∼ εb, one will expect a scattering resonance in the
open channel.
The two-body wave function can be written as

ψ ¼
�
eik·r þ foðkÞ

eikr

r

�
joi þ fcðkÞ

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mδ=ℏ2−k2

p
r

r
jci:

ð5Þ

Solving the Schrödinger equation ðĤ0 þ V̂Þψ ¼ Eψ with
E ¼ ℏ2k2=m, one can find

ð1þ ikas0ÞfoðkÞ − as1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mδ

ℏ2
− k2

r
fcðkÞ þ as0 ¼ 0; ð6Þ

ikas1foðkÞ þ
�
1 − as0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mδ

ℏ2
− k2

r �
fcðkÞ þ as1 ¼ 0: ð7Þ

Straightforward calculation yields the scattering length as
in the open channel as

as ¼ −foðk ¼ 0Þ ¼ −as0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mδ=ℏ2

p
ða2s0 − a2s1Þ

as0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mδ=ℏ2

p
− 1

: ð8Þ

Two-body problem with finite range potential.—We can
further more rigorously demonstrate the OFR with a
coupled two-channel model with finite range r0. When
r > r0, two atoms are noninteracting, and the zero-energy
s-wave wave function ψ ¼ uðrÞ=r with

uðrÞ ¼ α exp
�
−

ffiffiffiffiffiffi
mδ

ℏ2

r
r
�
jci þ βðr − asÞjoi: ð9Þ

For r < r0, the Hamiltonian is written as

Ĥ ¼
X
i¼þ;−

�
−
ℏ2∇2

m
þ ViðrÞ

�
jiihij; ð10Þ

where we have assumed that δ is much smaller than the
energy scale of the short-range potential ViðrÞ such that it
can be safely ignored in this regime. Each ViðrÞ (i ¼ þ;−)
corresponds to an s-wave scattering length ais, that is to say,
thewave function ψ i ¼ uiðrÞ=r in the r < r0 regime satisfies
the boundary condition ui0ðrÞ=uiðrÞjr¼r0 ¼ 1=ðr0 − aisÞ.
In the r < r0 regime the wave function can be written in
a general form:

uðrÞ¼ uþðrÞjþiþAu−ðrÞj−i

¼ uþðrÞþAu−ðrÞffiffiffi
2

p jciþ−uþðrÞþAu−ðrÞffiffiffi
2

p joi: ð11Þ

By matching boundary conditions between wave func-
tions Eq. (9) and Eq. (11) at r ¼ r0 for joi and jci channels
independently, and utilizing the boundary condition for
each ui, one can obtain A and as, where

as ¼
−as0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mδ=ℏ2

p
½ða2s0 − a2s1Þ − r0as0�ffiffiffiffiffiffiffiffiffiffiffiffiffi

mδ=ℏ2
p

ðas0 − r0Þ − 1
: ð12Þ

In the limit r0 → 0, Eq. (12) recovers the result of
Eq. (8). Thus we have demonstrated the OFR phenomena.
Equation (8) and Eq. (12) also show that the difference
between a−s and aþs , i.e., as1 ≠ 0, is crucial, as as becomes a
constant as as0 if one sets as1 ¼ 0 in Eq. (8) and Eq. (12).
Orbital Feshbach resonance.—Equation (12) shows that

as diverges when

δ ¼ δres ¼
ℏ2

mðas0 − r0Þ2
: ð13Þ

This determines the position of the OFR. It also indicates
that the precise location of the OFR may be altered by
short-range details. In addition, we also obtain that as has a
zero crossing when

FIG. 1 (color online). (a) Original energy level diagram. ΔE
denotes the excitation energy between jei and jgi. δg ¼ BggμB
and δe ¼ BgeμB are Zeeman energies of jgi and jei states,
respectively. Two states in the open channel are occupied. Arrows
indicate an interorbital (nuclear-) spin-exchange scattering proc-
ess, which couples the open channel jg↓; e↑i and closed channel
jg↑; e↓i. δ ¼ δe − δg ¼ BðδgÞμB is the Zeeman energy difference
between two channels and δg ¼ ge − gg is the difference in Landé
g factor. (b) Reorganized energy level diagram for the many-body
Hamiltonian, in which open channel states appear in lower energy.
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δ ¼ δ0 ¼
ℏ2

mðas0 − r0 − a2s1=as0Þ2
: ð14Þ

Since δ ¼ BðδgÞμB, we take aþs , a−s , r0, and ðδgÞμB from
the 173Yb atom measurement reported so far, and plot as as
a function of magnetic field B, as shown in Fig. 2. 173Yb is
a unique system to observe an OFR, since aþs is as large as
∼103a0. Therefore, it does not require a large magnetic
field to reach the OFR. Otherwise, if the scattering length is
small, it requires a much higher magnetic field (103–104 G
for 87Sr) to reach this resonance. On the other hand, since
the essential ingredient of the interorbit spin-exchange
process also exists between the 3P1 (or 3P2) state and
1S0, OFR can also exist in these mixtures, where the
g-factor difference is quite large, and it does not rely on a
large scattering length at zero field. Nevertheless, the
scattering behavior between these states is also more
complicated, and the details are left for future studies.
Regarding the loss near the OFR, there are two mecha-

nisms. First, the inelastic two-body loss, described by the
imaginary part of scattering length, is also shown in Fig. 2.
Second, the shallow bound state is also subjected to three-
body loss, which cannot be rigorously captured by our two-
body calculation. Nevertheless, we phenomenologically
include this effect by introducing a decay term on the
shallow bound state. We find that it will not affect the real
part of the scattering length, as long as the bound state has a
reasonable lifetime, but only enhance its imaginary part [10].
Here we would like to contrast the OFR in the alkali-

earth atom with the MFR in the alkali-metal atom. In MFR,
when two atoms interact at short distance, the interaction

potentials are different for the total electronic spin singlet
and triplet. While for OFR, the interaction potentials are
distinguished by the orbital singlet or triplet. In MFR, the
coupling between two channels is due to hyperfine inter-
action. While in OFR, the orbital dependent Landé g factor
can be viewed as coupling between orbital and nuclear spin,
therefore the two channels are coupled. In this analogy, the
orbital degree of freedom in OFR plays the same role as the
electronic spin degree of freedom in MFR.
Two order-parameters BCS-BEC crossover.—Since

ðδgÞμB is 5 orders of magnitude smaller than the geμB,
comparing OFR with a MFR in the same magnetic field
regime, the energy separation between open and closed
channel is much larger in the MFR case than that in the OFR
case. In a MFR case, this energy separation is a few orders of
magnitude larger than the Fermi energy. Therefore, in a
BCS-BEC crossover theory studied before [11], one can
either start with a single-channel model only, or with a two-
channel model but only including the bound state of the
closed channel. The scattering states in the closed channel
are never important. However, the situation in the OFR case
is considerably different. Considering a typical density of
Fermi gas, δ is comparable or can be even smaller than the
Fermi energy. Thus, we have to take into account scattering
states in both open and closed channels. This requires
introducing two self-consistent pairing order parameters
for open and closed channels, respectively. Below we shall
present such a formalism for crossover across an OFR.
We consider the situation that in the noninteracting limit,

total N fermions are equally populated in the two states in
the open channel (je↑i and jg↓i). We note that both
Ne ¼ Ne↑ þ Ne↓ and N↑ ¼ Ng↑ þ Ne↑ are good quantum
numbers. Subtracting the Hamiltonian with a constant term
ðΔEþ δ=2ÞNe − ðδe þ δgÞN↑=2, one can show the level
diagram can be reorganized as shown in Fig. 1(b), such that
the two states in the open channel appear in the lower
energy, with an energy separation of δ=2 below the two
states in the closed channel. Then in the noninteracting
limit (say, δ ¼ δ0), δ=2 is larger than the Fermi energy so
that only the open channel is equally populated. The many-
body Hamiltonian can be written as

Ĥ ¼ Ĥ0o þ Ĥ0c þ
gþ
2
Â†
þÂþ þ g−

2
Â†
−Â−; ð15Þ

Ĥ0o ¼
X
k

εkðc†g↓kcg↓k þ c†e↑kce↑kÞ; ð16Þ

Ĥ0c ¼
X
k

�
εk þ δ

2

�
ðc†g↑kcg↑k þ c†e↓kce↓kÞ; ð17Þ

where εk ¼ ℏ2k2=ð2mÞ − μ, and

Âþ ¼
X
k

ðcg↑−kce↓k − cg↓−kce↑kÞ; ð18Þ

FIG. 2 (color online). Scattering length as between je↑i and
jg↓i as a function of magnetic field for 173Yb atom. The blue
dashed line and red dash-dotted line are the real and imaginary
part of as obtained from the zero-range pseudopotential. The
solid line and red dotted line are as obtained from the finite
range potential. Here we take ðδgÞμB ¼ 2πℏ × 112 Hz=G, aþs ¼
3300a0 − i0.78a0, a−s ¼ 219.5a0 [4,5,8] and r0 is taken as the
van der Waal length, which equals 84.8a0 [9], with a0 the Bohr’s
radius.
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Â− ¼
X
k

ðcg↑−kce↓k þ cg↓−kce↑kÞ: ð19Þ

Now we defined two order parameters as Δþ ¼ gþhÂi=2
and Δ− ¼ g−hÂi=2, and we can perform mean-field decou-
pling of the interaction term which leads to

ĤMF ¼ Ĥ0o þ Ĥ0c þ ðΔþÂþ þ H:c:Þ

þ ðΔ−Â− þ H:c:Þ − 2jΔþj2
gþ

−
2jΔ−j2
g−

: ð20Þ

Following the standard BCS theory to diagonalize ĤMF
with the Bogoliubov transformation and minimizing the
ground state energy with respect to both Δþ and Δ− [12],
we reach two coupled gap equations:

"Δo
Δc

− 1

4πℏ2aþs
m

−
1þ Δo

Δc

4πℏ2a−s
m

#
¼

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεk þ δ

2
Þ2 þ jΔcj2

q −
2m
ℏ2k2

;

"Δc
Δo

− 1

4πℏ2aþs
m

−
1þ Δc

Δo

4πℏ2a−s
m

#
¼

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2k þ jΔoj2

p −
2m
ℏ2k2

; ð21Þ

where Δo ¼ Δ− − Δþ and Δc ¼ Δ− þ Δþ are pairing
order parameters in the open and closed channels, respec-
tively. Here, in contrast to the usual BCS-BEC crossover
where the scattering length is the tunable control parameter,
both aþs and a−s are fixed. Instead, δ is the tunable parameter
to control the crossover. Moreover, the number equation
also includes contributions from both channels

N ¼
X
k

0
@2 −

εkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2k þ jΔoj2

p −
εk þ δ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεk þ δ

2
Þ2 þ jΔcj2

q
1
A:

ð22Þ

Solving the gap equation, Eq. (21), with Eq. (22), we
findΔo has a π phase difference fromΔc, and we determine
both jΔoj, jΔcj and μ as a function of δ, as shown in Fig. 3.
We find the following. (i) When δ ≫ δres, the system is
away from OFR. In this case we find small jΔoj=EF,
jΔcj=EF, and μ → EF, which is the typical behavior in the
BCS regime. (ii) As δ → δres, both jΔoj and jΔcj increase
rapidly toward the same order as EF and meanwhile, μ
decreases. This feature is qualitatively consistent with a
crossover from the BCS to the unitary regime. (iii) While
when δ < δres and δ → 0, both pairing gaps saturate instead
of continuously increasing toward the deep BEC limit. This
is consistent with the fact that as finally saturates to as0.
We also plot the ratio jΔo=Δcj in the inset of Fig. 3(a), we

find when δ ≫ δres, this ratio decreases toward zero, and
thus the lhs of Eq. (21) diverges as it depends on Δc=Δo.
Effectively, if one compares Eq. (21) with a single-channel
BCS-BEC gap equation [12], the divergence of the lhs of

Eq. (21) is equivalent to that an open channel scattering
length decreases toward zero. When δ → δres, jΔo=Δcj→
ðaþs −a−s Þ=ðaþs þa−s Þ (∼0.875 for the scattering lengths we
use). The lhs of Eq. (21) approaches zero, indicating a
divergent effective scattering length. Finally, when δ → 0,
two channels become degenerate and thus this ratio
approaches unity. We remark that this mean-field calcu-
lation does not use the results from the two-body calcu-
lation above. It is an independent many-body calculation,
while the results are qualitatively consistent with two-body
results.
On the other hand, for the typical density we consider,

the quantitative behavior is quite different from the single
channel BCS-BEC crossover. We perform a single-channel
mean-field calculation, in which we only keep the two
states in the open channel and use the open channel
scattering length asðδÞ given by the two-body result of
Eq. (8). The result is shown by the dotted line in Fig. 3 and
compared with the two-gap theory presented above.
Remarkably, we find that in the BCS regime, the pairing

(a)

(b)

FIG. 3 (color online). Pairing order parameters (a) and chemical
potential (b) as a function of δ=δres across an OFR, with δres given
by Eq. (13) (r0 ¼ 0). In (a), red solid and blue dashed lines are
pairing order parameters in the open and closed channel,
respectively. For different δ=δres, corresponding values of
1=ðkFasÞ are marked by arrows, where as is the open channel
scattering length. Here aþs and a−s are taken from the 173Yb atom,
as described in the caption of Fig. 2, and n ¼ k3F=ð3π2Þ is taken as
5 × 1013 cm−3 in our calculation. For comparison, black dotted
lines in (a) and (b) show the pairing order parameter and chemical
potential for the single-channel BCS-BEC crossover with the
same 1=ðkFasÞ.
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in the two-gap theory is stronger than that in the single
channel model. While if we lower the density so that the
Fermi energy becomes much lower than δ=2, the results
gradually converge to the single channel result [13].
Outlook.—Our predication of OFR opens an avenue for

studying strongly interacting physics in alkali-earth atomic
gases. The two-gap Fermi superfluid is reminiscent of a two-
gap superconductor. Further studies including Gaussian
fluctuations can reveal the effect of a finite lifetime of
Cooper pairs, the superfluid transition temperature, and the
Leggett mode (relative phase mode between two gaps) in a
strongly interacting regime, which is left for future inves-
tigations. Moreover, by coupling je↑i and jg↓i states with a
laser, one can create spin-orbit coupling between them,
which avoids heating from spontaneous emission as in the
Raman scheme. Our OFR increases the attractive interaction
between them and can help to reach a topological superfluid
phase in this system.
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